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Abstract
Non-locally spin-entangled electron pairs could be used for quantum communi-

cation purposes inside a future solid-state-based quantum computer. In this thesis
we have addressed three important aspects related to them. First, we have studied
the problem of how to generate such EPR-pairs. We have obtained a local tunneling
Hamiltonian that permits to investigate transport through interfaces of arbitrary ge-
ometry. With it, we have analyzed the emission of two electrons forming a Cooper
pair from a superconductor into two normal metals through two narrow tunneling
contacts separated by a distance r. To overcome the problem of the quick decay of
that current with r, we have proposed a device which makes use of normal and An-
dreev resonances in a superconducting-2DEG structure to generate divergent beams
of nonlocally entangled electrons. In a second part, we have considered the problem of
the evolution of those entangled pairs inside a nanostructure when they are subject to
decoherence. We have modeled inelastic scattering by means of a phenomenological
charge-conserving voltage probe model, conveniently generalized to deal with entan-
gled states. Finally, we have investigated the problem of entanglement detection. We
have looked into the violation of the Clauser-Horne inequality expressed in terms of
the full electron counting statistics in a mesoscopic multiterminal conductor, find-
ing that there exist parameters of the system for which violation holds for arbitrary
strong decoherence. In order to be able to discriminate between singlet-entangled,
triplet-entangled or polarized states in the presence of decoherence, we have analyzed
the behaviour of shot-noise measurements in one of the outgoing leads of a beam
splitter geometry.
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Chapter 1

Introduction

In quantum mechanics there exists a phenomenon with no classical counterpart
whereby a system can be in a superposition of different states at the same time.
Moreover, two or more quantum objects can be in a special type of superposition
such that the state of the global system cannot be described as the product of the
states of its different constituents, even though the individual objects may be spatially
separated. These objects are then said to be mutually entangled [1, 2]. For example,
it is possible to prepare two spin-1/2 particles in a single quantum state called a
singlet state, such that when one is observed to be spin-up, the other one will always
be observed to be spin-down and vice versa. As a result, measurements performed
on one of the particles seem to be instantaneously influencing the other particle
entangled with it, no matter how far away it is. This “spooky action at a distance”,
as Albert Einstein called it, is in contradiction with the intuitively obvious principle of
local realism, which states that physical objects are influenced only by its immediate
surroundings and that they must objectively have their properties already before these
properties are observed. Schrödinger coined the term “entanglement” to describe this
peculiar connection between quantum systems in 1935 [3]. Since then this concept
has produced some of the most philosophically disturbing and entertaining questions
about the interpretation of quantum mechanics and it is at the core of the quantum
world weirdness.

But entanglement is not only of conceptual relevance. From the 1980s onwards,
scientists began to think about the non-local correlations of entangled quantum states
as a physical resource (like energy), which could open the door to problems un-
tractable inside classical physics in an efficient way, like for example prime factor-
ization of big numbers or the simulation of the dynamic of a quantum system. The
new field of Quantum Information (QI) had emerged, and soon became the object
of attention from different communities of physics, such as quantum optics, nuclear
physics or condensed matter physics.

Nowadays there already exist several proposals to build some of the basic ingre-
dients of the quantum computer hardware, such as quantum bits or qubits, which are
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2 Chapter 1: Introduction

bits of information that are allowed to be in any state of a quantum two-level system.
These state pairs might be two polarizations of a photon in an optical cavity, the
excess of one nuclear spin state over another in a liquid sample in a nuclear magnetic
resonance machine, the ground and excited states of an atom in a linear ion trap, or
the spin up and down of an electron confined in a quantum dot, just to mention a
few.

One of the requirements to build a quantum computer is that the chosen system
can be scaled-up to contain a large number of qubits. In this respect, the schemes for
quantum computation based on solid-state qubits are very promising. In particular,
the use of the electron spin as the qubit within semiconductors seems a convenient
option, since experiments have demonstrated very long lifetimes of electron spin, on
the order of 100 nanoseconds [4, 5]. This means that spin transport can be coherent
over long distances in semiconductors. Moreover, coherence times of electron spins
confined in semiconductor quantum dots were found to be even larger [6, 7].

There is another important task for quantum computation, which belongs to the
field of quantum communication, namely that of transmitting qubits between distant
locations in a faithful way. One way to attain this is to implement the so-called flying
qubits, which are qubits that can be conveniently moved from place to place [8]. In
principle, the natural candidate for these moving qubits is the two polarization states
of the photon. But, in order to avoid the problem of having to convert quantum
information from spin to light and vice versa in a potentially spin-based quantum
computer, it would be very desirable to be able to use mobile electrons as flying
qubits. This is the reason why, since 1999, a great deal of theoretical proposals to
design an entangler, i.e., a source of non-locally entangled pairs, have appeared inside
the community of solid-state physics, mainly dealing with the electron spin degree of
freedom. It is exactly in this field of knowledge where this thesis must be framed.

To sum up, the main motivation of this thesis has been to understand various
properties of electron spin entanglement in nanostructures. Specifically, we have
addressed some aspects of the following three important questions:

• How to generate non-local spin-entangled states in solid sate-based devices?

• How to describe its evolution subject to decoherence inside the nanostructure?

• How to detect that entanglement?

In order to elaborate on the description of the content of this thesis it is convenient
at this point to give a series of definitions of some basic concepts in the field of QI
theory. This is what we do in the next section. Some of those concepts come mainly
from a different field from the one this work is devoted to and are not the main
message nor the core of this thesis. They are simply useful to establish a common
language and to give a broader spectrum to the non-expert reader of the sort of
knowledge framework to which our work belongs. A reader already acquainted with
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terms such as: qubit, EPR-state, Bell inequality, etc., can jump directly to Sec. 1.2,
where we describe in more detail which are the specific problems we have addressed
here. Apart from the problems derived from the quantum communication motivation,
the dynamics of electron entanglement has stimulated our research into a number of
other interesting condensed-matter problems, which we point out in Sec. 1.3. We
finish this introduction with Sec. 1.4, where we describe the structure of this thesis.

1.1 Some basic concepts of Quantum Information

theory

Here we briefly introduce some historical background and some definitions of the
field of QI. This doesn’t pretend to be an exhaustive list nor a formal description of the
different subjects, but a modest summary of the main concepts that might help the
non-expert reader to get an idea of the motivation and the jargon used in this thesis.
Most of the definitions are taken from the Stanford Encyclopedia of Philosophy and
from Wikipedia (the Internet free encyclopedia), sometimes literally.

1.1.1 Einstein-Podolsky-Rosen paradox

Quantum mechanics is probably one of the most beautiful and experimentally
successful theories in scientific history, but also one of the most counterintuitive and
challenging for the human reasoning, since it seems to violate some fundamental prin-
ciples of classical physics we are so familiar with. Around 1927 a group of physicists,
which included N. Bohr, W. Heisenberg and M. Born, made a proposal about how
to interpret the mathematical formalism of quantum mechanics based in their study
of the physics of atoms. Some of the concepts they considered were that the wave-
function shouldn’t be thought as a real object, but as a mathematical tool whose
only physical meaning is our ability to calculate probabilities for the measurements
out of it. Besides, the results of measurements are probabilistic not because they
reflect our limited knowledge of some properties of the quantum objects, but because
measurement outcomes are fundamentally indeterministic. They also discussed the
problem of measurement. The asserted that the act of measurement causes an in-
stantaneous “collapse of the wave function”. This first general attempt to formulate
a correct interpretation of quantum mechanics would be known as the Copenhagen
interpretation [9–11].

In classical mechanics the state of a system can be described specifying a set of
parameters, like for example the positions and momenta of all the particles compris-
ing the system. The evolution of this system can be calculated according to some
deterministic laws, in such a way that it is possible to know the value of all those
parameters in a future time, and therefore completely characterize the properties of
the system. Pauli referred to this way of describing the system as “detached observer”
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idealization. Within the Copenhagen interpretation, such a description is not possi-
ble for quantum systems. Instead, the quantum state has to be described not only
taking into account the properties of the system, but also the presence or action of
an observer on it, as well as the outcomes of what has been observed in the past [11].

In 1935 A. Einstein, who rejected the orthodox Copenhagen interpretation of
quantum mechanics, co-authored an article with his two postdoctoral research stu-
dents B. Podolsky and N. Rosen, entitled: “Can Quantum Mechanical Description
of Physical Reality Be Considered Complete?” [12]. In the modern version of this
thought experiment, two observers, in our days commonly referred to as Alice and
Bob (or A and B), perform independent measurements of spin on a pair of electrons
in a spin singlet state. According to their reasoning, once Alice has measured her
spin in one direction, Bob’s measurement in the same direction is determined with
certainty, whereas immediately before Alice’s measurement Bob’s outcome is only
statistically determined. Thus, either the effects of measurement can travel from Al-
ice to Bob instantly, or the quantum mechanical description of the those spins is an
incomplete characterization of them. In order to avoid non-local, instantaneous “ef-
fects at a distance”, they concluded that there have to be some unknown deterministic
microscopic parameters not included in the theory that cause correlations between
particles. The missing parameters are sometimes referred to as hidden parameters
or hidden variables (although they didn’t use this terminology). Soon, their paper
became a centerpiece in the debate over the interpretation of the quantum theory,
and would be referred to as Einstein-Podolsky-Rosen (EPR) paradox [13].

1.1.2 Bell inequalities

After the EPR article the credibility of quantum mechanics was left in an unsat-
isfactory position, since it seemed that it was either incomplete in the sense that it
couldn’t describe some elements of physical reality, or it violated the principle of finite
propagation speed of physical effects. At that moment, most physicists attributed the
puzzling features of entangled quantum states to Einstein’s inappropriate “detached
observer” view of physical theory and left the question aside. This was unfortu-
nate, because the study of entanglement was ignored for thirty years until J. Bell’s
reconsideration and extension of the EPR argument in 1964 [1, 14].

Bell reopened the debate on the foundations of quantum mechanics examining the
problem of entanglement in simpler systems than the EPR case: he considered cor-
relations between two-valued observable quantities, like polarization or spin, of two
separate systems in an entangled state. He derived an inequality based on Einstein’s
assumptions of “locality” and “realism”, which was expressed in terms of joint prob-
ability distributions for the outcomes of measurements performed simultaneously in
the two separate parts of the entangled state. The measurements were performed for
different settings of the measurement apparatus (like, e.g., different polarizer angles).
In this way, Bell showed that quantum statistical correlations between those proba-
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bilities in different directions of the detectors lead to violation of the inequality. This
is summarized in the so-called Bell’s theorem: “No physical theory of local hidden
variables can ever reproduce all of the predictions of quantum mechanics”. The Bell
inequality is therefore a test to distinguish quantum from classical correlations by
comparing the correlation along different directions [15].

Bell test experiments to date have shown that, indeed, the inequalities of Bell’s
theorem are violated. This provides empirical evidence against local realism and
proves the validity of quantum mechanics. Besides, the principle of special relativity
is saved because, although the two entangled particles seem to be interacting across
a space-like interval, no useful information is traveling between them, so causality
cannot be violated through entanglement. The reason why it is impossible for Alice
to pass information to Bob (or vice versa) faster than the speed of light has to do
with the no cloning theorem, stated by Wootters, Zurek, and Dieks in 1982. This the-
orem forbids the creation of identical copies of an arbitrary “unknown” state without
disturbing it. If Alice and Bob share an entangled pair and it were possible for Bob
to clone his qubit many times, then Alice could send him bits of information in the
following way. If Alice wanted to send a “1” to Bob, she would measure the spin of
her particle in the z direction, collapsing Bob’s state to either spin-up or down. If
she wanted to send a “0”, she would leave her qubit untouched. On his part, Bob
would create several copies of his qubit and would measure the spin of each copy in
the z direction. If all the measurements yielded the same result, he would know for
sure that Alice had measured her spin, obtaining the bit of information “1”. If he
would measure half of the times up and half of the times down, Alice would have sent
him a “0”. But the fact is that, due to the existence of the no cloning theorem, it is
impossible to make an statistical inspection of entangled quantum states [2, 16].

1.1.3 Quantum information

The general study of the information-processing capabilities of quantum systems
is the subject of QI theory [17]. By definition, QI is physical information that is held
in the “state” of a quantum system. Two quantum systems in an entangled state
can be used as a quantum information channel to perform tasks which are impossible
classically. For example, if Alice and Bob share two particles, which we call I (Alice’s)
and II (Bob’s), in a maximally entangled state, it is possible for Alice to transfer
exactly the state of a third particle she has, let us say, an atom in a complicated state
she doesn’t know, to Bob’s particle II, which is at an arbitrarily distant location.
To do this, Alice has to perform a Bell measurement over the atom she wants to
“teleport” and her particle I of the entangled pair. After doing this measurement the
atom to be sent has lost its former state, but the information of its initial state has
not been destroyed, its has been transferred to particle II by virtue of the previously
existing entanglement, but not completely. It is necessary that Alice communicates
the outcome of her measurement to Bob classically (for example with a telephone call),
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so that Bob can make a unitary operation onto his particle. After this he obtains the
desired state. This phenomenon is known as quantum teleportation [18]. In 1993 C.
H. Bennett et al. proposed a scheme that in principle could be used to teleport an
object [19]. The scheme was experimentally verified by D. Bouwmeester et al. in 1997
using photons [20]. It is also possible to use entangled pairs in quantum cryptography,
where entanglement is used to transmit signals that cannot be eavesdropped upon
without leaving a trace.

Quantum information differs from classical information in several respects. For
example, it cannot be read or duplicated without disturbance (no cloning theorem).
Furthermore, since one system can exist in a superposition of many different states
at once, it is possible to process quantum information in a “parallel” way, i.e., expo-
nentially more efficiently than classical information. This permits to perform some
difficult tasks in an “efficient” way, i.e., in a time that increases polynomially with the
size of the problem. In contrast, these same tasks would be inefficient in a classical
context, because they would demand a time which increases exponentially with the
complexity of the problem. On the other hand, QI cannot be completely retrieved
through measurements of the qubits or any other means. Therefore, this massive
parallelism of quantum computations can only be exploited by the use of clever algo-
rithms, adapted to the peculiarities of quantum mechanical laws.

Quantum information, and changes in quantum information, can be quantified
by using a quantum analogue of the classical Shannon entropy, which is the Von
Neumann entropy [17].

1.1.4 Qubit and ebit

The basic unit of quantum information is the quantum bit or qubit, which repre-
sents the amount of information that can be stored in a two-level quantum mechanical
system. The term is due to Schumacher (1995) [21]. The state space of a single qubit
can be represented geometrically by the two dimensional surface of a sphere. This
essentially means that the single qubit space has two local degrees of freedom. Equiv-
alently, an n-qubit register space has (roughly) 2n continuous degrees of freedom. In
contrast, the configuration space of a classical register is strictly discrete, and there-
fore infinitely smaller.

An arbitrarily large amount of classical information can be encoded in a qubit.
This information can be processed and communicated but, because of the peculiarities
of quantum measurement, the amount of information that can be retrieved from a
single qubit is equal to one bit. It is in the processing of information (quantum
computation) that a difference occurs.

An important distinguishing feature between a qubit and a classical bit is that
multiple qubits can exhibit quantum entanglement. We say that two qubits in two
spatially separated points A and B are entangled when their state cannot be prepared
from a product state of the qubit in A and the qubit in B by means of local operations
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in each qubit and classical communication of bits of information between them. Two
qubits in a maximally entangled state are called entangled bit or ebit. The four basic
pure entangled states which form the Bell basis are:

|ΨBell1〉 =
1√
2

(| ↑〉A| ↓〉B − | ↓〉A| ↑〉B) , (1.1)

|ΨBell2〉 =
1√
2

(| ↑〉A| ↓〉B + | ↓〉A| ↑〉B) , (1.2)

|ΨBell3〉 =
1√
2

(| ↑〉A| ↑〉B − | ↓〉A| ↓〉B) , (1.3)

|ΨBell4〉 =
1√
2

(| ↑〉A| ↑〉B + | ↓〉A| ↓〉B) , (1.4)

where the arrows ↑, ↓ represent, for instance, the spin-up and the spin-down states of
an electron. One ebit is also the amount of information we need to exchange between
two qubits in A and B to create an entangled state out of them.

Entanglement is a necessary ingredient of any quantum computation that cannot
be simulated efficiently on a classical computer. A possible picture that helps to
understand the power of quantum computing is that, by means of entanglement, a
quantum computer performing a computation is in a superposition of many different
classical computations, all of which proceed concurrently.

1.1.5 Quantum computers

A quantum computer (QC) [1,22] is any physical device that makes direct use of
entanglement to perform operations on data. Due to this, QC promise to increase
greatly the efficiency of solving some problems with respect to the possibilities of
classical computers. One of these problems is integer factorization. If a number has
n bits (i.e., it is n digits long when written in the binary numeral system), then a QC
with just over 2n qubits can use Shor’s algorithm (1994) to find its factors. Another
problem is called the discrete log problem. This ability would allow a QC to “break”
many of the cryptographic systems in use today, in the sense that there would be a
relatively fast (polynomial in n computation time) algorithm for solving the problem.
Another interesting problem which could only be solved with a QC was proposed
by Richard Feynman in 1982 [23]. It is the simulation of the dynamics of quantum
systems. The dramatic advantage of QC is currently known to exist for only those
three problems: factoring, discrete log, and quantum physics simulations. However,
there is no proof that the advantage is real: it is still possible that an equally fast
classical algorithm may be discovered, although it is considered unlikely. There is yet
other problem where QC have a smaller, though significant (quadratic) advantage.
It is quantum database search, and can be solved by Grover’s algorithm. In this
case the advantage is provable. This establishes beyond doubt that (ideal) quantum
computers are potentially superior to classical computers [22].
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One of the greatest challenges nowadays is to implement the basic quantum com-
putational elements in a physical system and to demonstrate that they can be reliably
and scalably controlled. Experiments have already been carried out in which quantum
computational operations were executed on a very small number of qubits. In par-
ticular, in 2001 I. L. Chuang and his group performed the world’s most complicated
QC calculation to date, a 7-qubit computer (based on nuclear magnetic resonance on
molecules in solution) that factorized the number 15 using Shor’s algorithm [24].

How a quantum computer works

A classical computer has a memory made up of bits, where each bit holds either a
one or a zero. This device computes by manipulating those bits, i.e. by transporting
them from memory to logic gates and back. By “gates” is meant the set of transfor-
mations that make up a computation. The same philosophy applies to a QC, but with
some differences. First, it contains a set of qubits. As we said before, a qubit can hold
a one, a zero, or any superposition of both states. Therefore, if we have in memory a
n-qubit register, the total state of the QC is a superposition of as many as 2n states,
each of them classically equivalent to a single list of n 1’s and 0’s. Like before, a
QC operates by manipulating those qubits, but now it transports them from memory
to quantum logic gates and back. Quantum logic gates act on qubits by applying
unitary (reversible) transformations. Besides they work with superpositions, so they
can perform multiple logic operations at the same time. For practical reasons, it is
convenient to choose sets of universal quantum gates. These are sets of gates from
which any computation can be constructed, or at least approximated as precisely as
desired. Such a set allows one to perform any arbitrary calculation without invent-
ing a new gate each time. It can be shown that all unitary quantum operations on
an n-qubit register that one could think of, can be implemented by combinations of
a single-qubit unitary gate (a rotation) and a two-qubit controlled-NOT gate. The
concept of a universal quantum computer was first proposed in 1985 by D. Deutsch.
Another important difference with respect to a classical computer is that quantum
computations are probabilistic. In a QC, at the end of the calculation a measure-
ment is performed on the n-qubit register. By the laws of quantum mechanics, that
measurement will yield a random n-bit string and will destroy the stored state as
well. In order to be able to use a QC to get the solution of a desired calculation, the
computation has to be designed in such a way that the probability distribution of the
measured output string is skewed in favour of the correct value of the function. Thus,
generally one has to repeat the computation several times and choose the value that
has come out with higher probability [22,25].
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Requirements of a quantum computer

There exists some requisites for a successful implementation of a QC. D. DiVin-
cenzo listed the following requirements for a practical QC [22,26]:

• the qubits have to be able to be initialized to arbitrary values,

• quantum gates have to work faster than decoherence time,

• there must exist a universal set of quantum gates,

• the qubits have to be read easily, and

• it has to be scalable, i.e., it has to be possible to enlarge the device to contain
many qubits while still adhering to all requirements described above.

Apart from these five QC criteria, there also exist two QC networkability criteria,
which are two “desiderata” that are important for performing quantum communica-
tion tasks [8]. They are:

• the ability to inter-convert stationary and flying qubits, and

• the ability to faithfully transmit flying qubits between specified locations.

Proposals for quantum computers

Many setups have been proposed for the hardware of a QC arising from different
fields of research. Some of them are:

• Trapped ion QC → The earliest proposal using these systems came from J.
I. Cirac and P. Zoller in 1995 [27]. Ions, or charged atomic particles, can be
confined and suspended in free space using electromagnetic fields. They are then
said to be “trapped” in magnetic traps. Qubits are stored in stable electronic
states of each ion, and QI can be processed and transferred through the collective
quantized motion of the ions in the trap (interacting through the Coulomb
force). Lasers are applied to induce coupling between the qubit states (for
single qubit operations) or coupling between the internal qubit states and the
external motional states (for entanglement between qubits). The fundamental
operations of a QC have been demonstrated experimentally with high accuracy
in trapped ion systems, and a strategy has been developed for scaling the system
to arbitrarily large number of qubits by shuttling ions in an array of ion traps.
Nevertheless, ion trap computers are limited in speed by the vibration frequency
of the modes in the trap.
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• Cavity quantum electrodynamics (CQED)-based QC → This term refers to the
coherent interaction of a material qubit (such as a trapped atom or semiconduc-
tor dot system) with the quantized (usually single photon) field of a optical or
microwave resonator. To achieve coherent dynamics with just a single photon
and atom, a small, extremely low-loss build-up cavity is used to enhance the
electric field per photon such that the coherent Rabi frequency of the atom-
field interaction is faster than the spontaneous emission rate of the atom or the
decay rate of the field in the cavity. The first proposal of this kind was done
by P. Domokos et al. in 1995 where Rydberg atoms and a superconducting
millimeter-wave cavity were used [28].

• Nuclear magnetic resonance (NMR) on molecules in solution-based QC → Nu-
clear spins of molecules in a solution serve as qubits. The nuclear spins can
interact with each other, be programmed by radio frequency pulses and be de-
tected by NMR instruments similar to those commonly used in hospitals and
chemistry labs. The first proposal for this kind of systems came from A. Ger-
shenfeld and I. L. Chuang in 1997 [29]. As a result of several significant exper-
iments, NMR has become the most popular component in quantum hardware
architecture. Nevertheless, NMR devices have an exponential attenuation of
signal to noise as the number of qubits in a system increases.

• Superconductor-based QC (charge-based or flux-based QC) → Solid-state im-
plementations of a QC would be a highly desirable achievement, particularly
nanometre-scale electronic devices, since these could be easily embedded in elec-
tronic circuitry and scaled up to provide the large numbers of qubits required for
useful computations. Among the first proposals for solid-state quantum com-
puting were qubits based on superconducting Josephson junctions, proposed by
A. Shnirman, G. Schön and Z. Hermon in 1997 [30–32]. In this proposal two
kinds of devices have been suggested, based on either charge or phase (flux)
degrees of freedom. Single- and two-qubit quantum manipulations can be con-
trolled by gate voltages in one case and by magnetic fields in the other case.
Both kinds of devices can be fabricated with present technology. There are
two major problems that must be solved before these devices can be used for
quantum information processing, decoherence times and the readout of the final
state of the system [31,32].

• Quantum dot electron spin-based QC → In 1998 D. Loss and D. P. DiVincenzo
opened up the field of spin-based solid-state quantum computation by proposing
the spin of an electron trapped in a quantum dot as the qubit [8, 33]. Spin-
based quantum computation relies on qubit-qubit interactions to implement
two-qubit gates where the charged spin qubits can interact with each other via
the Coulomb exchange interaction. The major drawback of this proposal is the
decoherence of the spin qubits due to interactions with the environment.
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• Optic-based QC → One of the earliest proposals for quantum computation is
based on implementing a quantum bit with two optical modes of a photon. The
proposal is appealing because of the ease with which photon interference can be
observed. But the need for qubit-qubit interactions represents a major drawback
because photons do not ordinarily interact; nonlinear optical media can mediate
photon-photon interaction, but it is technically difficult to make these perform
with the required strength. However, E. Knill et al. showed in 2001 that efficient
quantum computation is possible using linear optics, using only beam splitters,
phase shifters, single photon sources and photo-detectors. This method exploits
feedback from photo-detectors and is robust against errors from photon loss
and detector inefficiency [34]. Nevertheless, free-photon quantum computation
schemes are so far only nearly deterministic (i.e., the quantum gates operate
with less than 100% success).

• Free electron QC → Qubit-qubit interactions are, in principle, a crucial ingre-
dient for quantum computation. Most of the proposals and experiments rely
on controlled qubit-qubit interactions to implement universal two-qubit gates.
Nevertheless, Beenakker et al. [35] showed in 2004 that projective measurements
together with single spin rotations on electron spin flying qubits can yield ef-
ficient and deterministic quantum computation. In this way no qubit-qubit
interaction is needed, and thus free-electron quantum computation is possible.
To overcome a theorem that seemed to preclude efficient quantum computation
with free electrons, these authors used the fact that charge measurements do not
affect the spin qubit. However, this proposal, which contains a spin-polarizing
beam-splitter, is not yet experimentally accessible.

1.1.6 Decoherence

For a QC to work it is necessary that the operations performed by the gates during
a calculation are unitary, that is, reversible. Besides, the states that are often used
as the input of those gates have to arrive there effectively in a specific superposition
of states or in an entangled state. However, in the real world there are interactions
that break the coherent state in which the components of a QC need to remain in
order to fulfil those operations. In general, it is very difficult to shield these devices
completely from extrinsic and intrinsic sources of decoherence, and so far QC have
only solved trivial problems. For the typical systems proposed as candidates for
quantum computing, the decoherence times vary from nanoseconds to seconds. It is
necessary for a calculation to be done successfully that the time required to do it be
much smaller than the decoherence time, at least without employing quantum error
correction. The error rate is precisely defined as the ratio of the operation time to
the decoherence time. If the error rate is small enough, it is possible to use quantum
error correction, which corrects errors due to decoherence. An often cited (but rather



12 Chapter 1: Introduction

arbitrary) figure for maximum error rate in each gate is 10−4. This implies that each
gate must be able to perform its task 10000 times faster than the decoherence time
of the system [22].

1.2 The problems treated in this thesis

As we already mentioned at the beginning of this introduction, in the last seven
years there has been a frenetic activity inside the field of solid-state-based flying
qubits. The study of how to create and measure non-locally entangled particles has
attracted the interest of physicists for its potential use in quantum communication
tasks, like quantum teleportation or quantum cryptography. Furthermore, a proposal
to build a free electron quantum computer with flying qubits already exists in the
literature [35]. Here we describe our contribution to the field together with previous
proposals that motivated our work and some new ideas from other groups.

1.2.1 Non-local entanglement generation in solid state de-
vices

An entangler is a device which serves as a source of non-locally entangled states.
In the recent years there has been a large amount of proposals to build such a device
within a solid-state medium.

One possibility is using conventional superconductors as a natural source of spin
entangled electron pairs that may be injected into normal or ferromagnetic metals [36–
57]. In order to obtain the needed spacial separation of the two electrons when they
are extracted from the superconductor several mechanisms have been proposed, like
spin and energy filters [41,46,49], two quantum dots [38,49,53], the use of Luttinger-
liquid leads [45, 47] or Coulomb blockade from the finite resistance leads [50]. Our
proposed mechanism, as we will show below, is an angular filter [54].

Other than through the use of superconductors, many other ways to generate
these EPR states have been proposed: by means of a magnetic impurity [58], through
a single dot [59], from biexcitons in double quantum dots [60], through a triple dot
[61], using chaotic quantum dots [62], from Coulomb scattering in a two-dimensional
electron gas [63] or between static and flying qubits in a carbon nanotube [64, 65],
using voltage pulses [66], through a nano-mechanical oscillator [67] or from buckling
nanobars [68].

Within the set of mechanisms for generating pairs of entangled qubits there is
a group where no interactions are needed to create them (in all the cases cited
above some kind of electron-electron interaction was always present, like the phonon-
mediated pairing interaction in the superconductor, or the Coulomb interaction in
the quantum dot, etc.). In the absence of interactions it is still possible to entangle
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the spin degree of freedom [69–71], or the orbital degree of freedom [62,72–74]. For a
recent review on electron-hole entanglement free of interactions see Ref. [75].

As we explain in the following section, in this thesis we have focused on the study
of a superconductor as a source of entangled pairs. In our case, the degree of freedom
which is entangled is the spin. Spin entanglement is much less sensitive to decoherence
than orbital entanglement, simply because most external degrees of freedom couple
to the orbital degree of freedom of the electron rather than to its spin.

Our proposals

We have studied two types of entanglers in which the source of non-locally entan-
gled pairs is a BCS conventional superconductor.

In the first work [51], which is described in detail in Chapter 2, we were inspired
by the 2001 article of Recher, Sukhorukov, and Loss [38]. There we theoretically
investigate the simultaneous emission of two electrons from a three-dimensional (3D)
superconductor into two different normal metals at low temperatures and voltages
(this process is usually called “crossed Andreev reflection”). These electrons, which
form a Cooper pair inside the superconductor, lose the superconductor correlations
when they jump into the normal metals (we disregard proximity effect), but the sin-
glet spin-entanglement between them holds when they are in the two distant metallic
wires, thus constituting an ebit of information. In order to describe the tunneling
current from a finite size interface such as the one formed by the 3D superconductor
and the two distant contacts attached to it, we have obtained a local tunneling Hamil-
tonian involving the normal derivatives of the electron fields in each electrode (instead
of the commonly used but erroneous one that is proportional to the fields). We find
that, as a function of the distance r between contacts, the entangled current is cut off
by an exponential decay with the superconductor coherence length [38], and further
modulated by a geometrical prefactor (∼ 1/r4) which makes the probability to extract
entangled pairs to decay quickly on the scale of the Fermi wavelength. Therefore, in
this work we conclude that the requirement of physical separation between the con-
tacts attached to the superconductor is a severe limitation in practice. We note that,
if the tunneling matrix elements are assumed to be momentum independent [38], then
the geometrical prefactor decays more leniently with distance (∼ 1/r2). There have
been some ideas in the literature to try to improve this decaying prefactor. Within
the context of momentum-independent tunneling models, the power law changes if
the superconductor is low (d) dimensional [45,49], or diffusive [48,52], yielding r−d+1

and r−1, respectively. It remains to be investigated how that behaviour changes when
more realistic tunnel matrix elements are employed.

To overcome the shortcomings caused by the need to emit the pair of entangled
electrons from distant points, we propose a different experimental setup [54], analyzed
in detail in Chapter 3, in which the emitter is again a BCS superconductor. The
idea behind it is to transmit both electrons through the same spatial region but
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inducing them to leave in different directions. To attain this we propose the use
of normal and Andreev resonances in normal-superconducting structures. Resonant
levels are tuned to selectively transmit electrons with specific values of the momentum
perpendicular to the interface, thus fixing the magnitude of the exit angle. When
the normal metal is a ballistic two-dimensional electron gas (2DEG), the proposed
scheme guarantees arbitrarily large spatial separation of the entangled electron beams
emitted from a finite interface. We have performed a quantitative study of the linear
and nonlinear transport properties of some suitable structures, taking into account
the large mismatch in effective masses and Fermi wavelengths. Numerical estimates
confirm the feasibility of the proposed beam separation method. Besides, the type
of structures needed for this kind of device seems to be within the reach of current
experimental expertise [76, 77].

1.2.2 Evolution of entangled states in nanostructures: deco-
herence

In real systems electrons are unavoidably coupled to external degrees of free-
dom. As a result, dephasing (term we will normally use if energy is conserved) or
decoherence (in general) takes place, thereby reducing and eventually destroying en-
tanglement. Understanding the consequences of this phenomenon is an important
issue.

For spin entanglement, the spin-orbit interaction and the hyperfine interaction
with nuclear spins are effective mechanisms of dephasing and relaxation. For a review
on decoherence of electron spins confined to quantum dots in the context of the Loss-
DiVincenzo proposal [33] see Ref. [8].

For orbital entanglement, the electromagnetic fluctuations caused by other charges
lead to decoherence (or to dephasing if the fluctuations are slow enough). Various phe-
nomenological methods have been developed to treat its effect in transport through
mesoscopic conductors. In Refs. [73,74,78,79] the effect of dephasing was mimicked by
introducing in the density matrix of the electronic entangled states a phenomenolog-
ical parameter which suppressed its off-diagonal elements. In Refs. [72,80] dephasing
was introduced averaging over an uniform distribution of random phase factors ac-
cumulated in each edge channel of the quantum Hall bar. In Refs. [81, 82], which
actually describe exactly nonequilibrium radiation acting on the system, dephasing
was induced by a classical fluctuating potential. In Ref. [83], dephasing was treated
as random fluctuations of the phase of propagating modes through the conductor.
These two last methods have been recently applied to full counting statistics (FCS)
in Refs. [84, 85].

It is also possible to treat decoherence phenomenologically as due to the presence
of additional fictitious reservoirs or voltage probes attached to the mesoscopic con-
ductor under study. This method, which mimics the effect of inelastic processes, was
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introduced by Büttiker twenty years ago [86,87]. The advantage of this model resides
in the fact that inelastic, phase randomization processes are implemented within an
elastic, time-independent scattering framework. Ideally, a voltage probe is an infinite
impedance terminal with zero net current flow, i.e. any electron leaving the conductor
through the probe is thermalized by dissipation and immediately fed back into the
conductor. Early theory [87] used these dissipative voltage probes as simple means
to investigate the transition from quantum coherent conduction to the classical series
addition of resistances. Later on, it was generalized to include instantaneous cur-
rent conservation [88]. Moreover, it was realized that, theoretically, dissipation at a
probe can be suppressed by demanding that each electron exiting into the probe is
replaced by an electron incident from the probe at the same energy [89, 90]. Such
a dephasing probe can serve as a simple model to describe dephasing in mesoscopic
conduction processes. Alternatively, it is a good model for a real infinite-impedance
voltage probe, a common component of many mesoscopic devices.

Voltage and dephasing probes also play an important role in the investigation of
noise and current correlations in mesoscopic conductors [85, 88–94]. The validity of
the model has been widely discussed (for a review see Ref. [95]), in general finding
good qualitative agreement with microscopic models [96–99] and experiments [100,
101], although in certain systems failing at a quantitative level [82]. Recently it was
demonstrated to become equivalent to microscopic phase averaging techniques at the
FCS level in some limits and setups [102]. Besides, recently it has been used to model
spin-flip scattering and decoherence in chaotic quantum dots [103,104].

Nevertheless, the problem of how to apply such decoherence model to the partic-
ularly interesting case of nonlocally entangled input currents had not been previously
discussed to the best of our knowledge. This is what we have done [93,94] and what
we summarize below.

Phenomenological model for inelastic scattering

In Ref. [93] we treat the effect of inelastic scattering, as produced by the presence
of additional fictitious reservoirs [86,87], over a pair of non-locally entangled electron
states and its consequences for detection of entanglement. Decoherence is parame-
terized by an inelastic scattering probability α and it affects both the spin and the
energy degrees of freedom. However, in this work, which is presented here in Chapter
4, we don’t consider instantaneous conservation of the current that flows in and out of
the external reservoir, but we set it to zero only on average. In this sense we are not
describing a true voltage probe attached to the system, since by definition it should
have an infinite impedance an therefore zero instantaneous net current flow through
it.

We have solved this problem in Ref. [94], where we develop a modification of the
fictitious voltage probe model generalized to include instantaneous current conser-
vation in the presence of arbitrary incoming entangled states. Our generalization
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is specifically targeted towards the computation of the FCS of a generic mesoscopic
conductor and, by using a different voltage probe for each spin, we conserve spin but
not the energy degree of freedom. This problem is described in detail in Chapter
5. Let us add here that, in our method, a sequential scattering approximation is
implicit. If we wanted to describe only dephasing, i.e, phase memory loss without
exchange of energy, then different energies would decouple in the elastic scattering
problem and we could treat each energy separately. But in the presence of inelastic
scattering this is not possible anymore. In order to deal with this, instead of using
the energy representation, what we do is to use the wave packet representation, in
which localized electrons arrive at the voltage probe at fixed times. In this language,
an electron that in the absence of inelastic scattering would arrive to a detector at
a time τi, in the presence of inelastic scattering is delayed and arrives at a later one
τi + δt, which is equivalent to energy relaxation. Moreover, in our calculation we
ignore the wave packet overlap, this is, we divide the time in slices ∆t in such a
way that each particle group scatters through the system completely before the next
one comes. What we suggest is that the contribution coming from this overlap is
negligible in the long time limit. We don’t prove this statement, we just justify it
by obtaining with our method exactly the same analytical expressions for current
and all cumulants (for the characteristic function) as with the Langevin semiclassical
approximation [88] in a series of systems without incident entanglement. Inelastic
scattering is specifically taken into account in our model through the memory that a
quantum counter Q we introduce in the voltage probe keeps of each event. It works
in such a way that it tends to counteract the excess or absence of particles the probe
got in the previous event, therefore modeling charge relaxation. Thus, this counter
correlates one slice ∆t with the following one and so on. With this model we try to
phenomenologically characterize the inelastic scattering produced onto the electrons
by an external dissipative bath (not electron-electron interaction).

1.2.3 Detection of entanglement

Besides its generation, a crucial issue is that of the detection of entanglement. By
means of a beam-splitter, entanglement can be detected in transport through an anal-
ysis of current noise [105–107] or higher cumulants (FCS) [94,108]. Furthermore, the
presence of entanglement can be revealed by analyzing Bell inequalities and quantities
like concurrence [109], which have been expressed in terms of zero-frequency charge-
and spin-current noise [41, 46, 72, 73, 110–112]. Violation of a Bell inequality implies
that there exist quantum correlations between the detected particles that cannot be
described by any local hidden variables theory. In the same spirit as it was done for
the noise, in Ref. [113] a Clauser-Horne (CH) inequality 1 [115, 116] was derived for
the FCS.

1Given the conditions |x|, |x′|, |y|, |y′| ≤ 1, the the so-called CH (or CH74) inequality is derived
from the algebraic inequality −1 ≤ xy − xy′ + x′y + x′y′ − x′ − y ≤ 0. In reality, there is an infinite
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Clauser-Horne inequality and shot noise in a beam splitter

In Refs. [93, 117] we analyze the effect of decoherence on the violation of the CH
inequality, when it is expressed in terms of the FCS, in a mesoscopic multiterminal
conductor. There, the setup consists of an entangler, whose existence is assumed,
that emits a flux of entangled electrons into two conductors characterized by a scat-
tering matrix and subject to decoherence (as explained in the previous subsection).
Given a certain average number of incoming entangled electrons, we evaluate the CH
inequality as a function of the numbers of detected particles and of the various quan-
tities characterizing the scattering matrix. When decoherence is turned on, we show
that the amount of violation of the CH inequality is effectively reduced. Interestingly
we find that, by adjusting the parameters of the system, there exists a protected re-
gion of values of the detected particles for which violation holds for arbitrary strong
decoherence. This work is presented here in Chapter 4.

In Chapter 5 we present the results of Ref. [94]. There we analyze the robustness of
the entanglement detection scheme through a beam-splitter geometry proposed in Ref.
[106], in the presence of spin-conserving inelastic scattering and finite backscattering
for various incoming non-locally entangled current states. We find that, unlike elastic
orbital dephasing [73], the action of inelastic processes in the beam-splitter cannot be
neglected, since it directly affects the underlying physical mechanism of the detector,
which is the fact that two electrons with equal quantum numbers cannot be scattered
into the same quantum channel (Pauli blocking). If energy is not conserved, such
antibunching mechanism is no longer perfect, and the entanglement detection scheme
has to be revised. However, we find that the detection of entanglement through
shot noise measurements remains possible even under very relaxed conditions for
imperfections in the beam-splitter device and substantial inelastic scattering (up to
50%).

1.3 Other motivations and contributions of this

thesis

Along with the main motivation of this thesis, which is the study of quantum
communication problems in solid-state devices, we have faced other interesting topics
inside the field of Condensed Matter physics. We provide here with a brief summary
of other contributions we have made in this thesis and other tools we have used:

• Probably the most important technical contribution of this thesis is the study
we have done in Chapter 2 of a local tunneling Hamiltonian that permits to
investigate transport through interfaces of arbitrary geometry and potential

hierarchy of such Bell type inequalities, which can basically be classified by specifying the type of
correlation experiments they deal with [114].
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barrier shapes [51]. We prove that, in a 3D or 2D heterostructure, the bilinear
momentum dependence of the low-energy tunneling matrix element translates
into a real space Hamiltonian involving the normal derivatives of the electron
fields in each electrode. We also derived this form from a tight-binding descrip-
tion. Besides we show that, in a ballistic metal, the neglect of the momentum
dependence of tunneling causes the violation of unitarity and leads to the wrong
thermodynamic (broad interface) limit, among other inconsistencies. This local
Hamiltonian has been recently used in other interesting problems, like in the
work “Quantum charge fluctuations in a superconducting grain” by M. Houzet,
D. A. Pesin, A. V. Andreev and L. I. Glazman [118], and in the work “Weak
Localization in Metallic Granular Media” by Y. M. Blanter, V. M. Vinokur and
L.I. Glazman [119], both of them in 2005.

• Also in Chapter 2 we have studied the angular distribution of electron cur-
rent flowing through tunneling normal metal-superconductor (NS) and normal
metal-normal metal (NN) interfaces of circular shape and finite radius. In the
case of the Andreev current through a NS contact, we have computed the an-
gular correlations between the entangled electron beams emitted through the
finite size interface and show how they are lost as the interface radius becomes
small.

• We have rigorously established the physical equivalence between Cooper pair
emission and Andreev reflection of an incident hole in a NS interface, noting that
they emerge from different choices of the chemical potential respect to which
quasiparticles in the normal metal are defined, µS in the standard Bogoliubov -
de Gennes picture, and µN in the scenario which contemplates the spontaneous
emission of two electrons (Chapter 2).

• In Chapter 3 we have studied resonant transport through double barriers in
superconductor metal-semiconductor nanostructures when there exists a large
mismatch in effective masses and Fermi wavelengths. We have found zero bias
and finite bias peaks in the differential conductance vs. applied voltage which
are not symmetric under reversal of voltage sign.

• We have employed the FCS as the observable quantity to test the violation of
the CH inequality. In particular, we consider the joint probability distribution
P (Q1, Q2) for transferring a number of Q1 and Q2 electronic charges into two dif-
ferent leads over an observation time t. The electron counting is performed using
spin-selective counters, which are spin filters without backscattering (Chapter
4).

• Following the idea of Ref. [106], in Chapter 5 we have used a local spin-rotation
in one lead of a beam-splitter geometry patterned onto a 2DEG. The spin-
rotation is implemented theoretically by the addition of backgates above and



Chapter 1: Introduction 19

below a certain section of the lead. Applying a voltage across these backgates
the structure inversion asymmetry of the 2DEG is enhanced, inducing a strong
Rashba spin-orbit coupling in that region of the 2DEG in a tunable fashion with-
out changing the electron concentration. This in turn gives rise to a precession
of the spin around an in-plane axis perpendicular to the electron momentum, re-
sulting in a tunable spin rotation of a certain angle after crossing the region with
backgates. This mechanism permits to distinguish between different entangled
and polarized incoming states due to switching from bunching to antibunching
signatures in shot noise measurements [106].

• Also in Chapter 5 we have generalized the voltage probe phenomenological
model of inelastic scattering to obtain the FCS of non-locally entangled particles
traversing a mesoscopic conductor.

1.4 Structure of this thesis

This thesis is organized in the following way: It contains four chapters, the first
two of them, Chapters 2 and 3, are devoted to the question: How to generate non-
locally spin-entangled electrons using hybrid normal-superconducting structures? ; and
the other two chapters, Chapters 4 and 5, to the questions: How to describe the
evolution of non-locally entangled states in the presence of inelastic scattering?, and
How to detect non-local entanglement and how to discriminate between different in-
coming entangled states and non-entangled ones? Each chapter has a self-contained
introductory section to the specific problem it deals with (where many references to
related works in the field are given), some new results we have obtained, and a con-
clusive summary at the end. Besides, a section devoted to “Related experiments” is
included at the end of each chapter. Due to the novelty of the problems considered
in this thesis, our theoretical studies have not been targeted to describe an already
pre-existing experiment; at most, to trigger the interest of some experimental groups
on the realization of the proposed devices. Nevertheless, with the passing of the years
there have appeared in the literature some related experiments to some of the prob-
lems treated here which are not so far from the specific devices we had studied. This
is for example the case of the work “Experimental Observation of Bias-Dependent
Nonlocal Andreev Reflection” by S. Russo, M. Krough, T. M. Klapwijk and A. F.
Morpurgo in 2005 [120], which is described in Chapter 2, or the experiment “Shot-
noise and conductance measurements of trasparent superconductor/two-dimensional
electron gas junctions”, by B.-R. Choi et al. in 2005 [76], described in Chapter 3.
Other experiments are relevant to us simply because they confirm the experimental
accessibility of some quantities we use in our theory. This is the case of the FCS for
electrons of Chapter 4, whose experimental accessibility is not so far away according
to the work “Current measurement by real-time counting of single electrons” by J.
Bylander, T. Duty and P. Delsing in 2005 [121]. Finally, we have transferred to the
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appendices some of the more lengthy discussions and computations that could have
otherwise distracted from the main discourse.



Chapter 2

Entangled electron current through
finite size NS tunneling structures

In this chapter we investigate theoretically the simultaneous tunneling of two elec-
trons from a superconductor into a normal metal at low temperatures and voltages.
Such an emission process is shown to be equivalent to the Andreev reflection of an
incident hole. We obtain a local tunneling Hamiltonian that permits to investigate
transport through interfaces of arbitrary geometry and potential barrier shapes. We
prove that the bilinear momentum dependence of the low-energy tunneling matrix
element translates into a real space Hamiltonian involving the normal derivatives of
the electron fields in each electrode. The angular distribution of the electron current
as it is emitted into the normal metal is analyzed for various experimental setups.
More importantly for current research on quantum information devices, in the case
of a two-point interface we calculate the nonlocally entangled current stemming from
processes in which each electron leaves the superconductor through a different orifice.
We find that, as a function of the distance between openings, it is cutoff by an expo-
nential decaying with the superconductor coherence length and, due to a geometrical
prefactor, it decays quickly on the scale of the Fermi wave length. Finally, we show
that, in a full three-dimensional problem, the neglect of the momentum dependence
of tunneling causes the violation of unitarity and leads to the wrong thermodynamic
(broad interface) limit, among other inconsistencies.

The contents of this chapter were published in Eur. Phys. J. B 40, 379 (2004),
by E. Prada and F. Sols.

2.1 Introduction

The electric current through a biased normal-superconductor (NS) interface has
for long been the object of extensive theoretical and experimental attention [122–125].
Recently, new interest in this classic problem has been spurred by the possibility of

21
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using conventional superconductors as a natural source of entangled electron pairs
that may be injected into a normal or ferromagnetic metal [36–46,48–50,52,53,56,126]
and eventually used for quantum communication purposes. Clearly, the efficient and
controlled emission of electron singlet pairs into normal metals or semiconductor
nanostructures requires a deeper understanding of the underlying transport problem
than has so far been necessary. In particular, it is of interest to investigate how
the entangled electron current depends on various parameters such as the shape and
size of the NS interface as well as the potential barrier profile experienced by the
tunneling electrons. A preliminary focus on tunneling interfaces seems adequate,
both because such interfaces are amenable to a simpler theoretical study and because
the low electric currents which they typically involve will facilitate the control of
individual electron pairs.

In the light of this new motivation, which shifts the attention onto the fate of
the emitted electron pairs, it seems that the picture of Andreev reflection, which so
far has provided an efficient book-keeping procedure, has reached one of its possible
limits. When dealing with finite size tunneling contacts, the Hamiltonian approach
is more convenient than the calculation of the scattering wave functions, since it does
not require to solve the diffraction problem to find the conductance. Moreover, it is
hard to see how problems such as the loss of nonlocal spin correlations among distant
electrons emitted from a common superconducting source can be analyzed in terms
of Andreev reflected holes in a way that is both practical and respectful to causality.
While an Andreev description may still be practical in situations involving multi-
ple electron-hole conversion, the fate of the quasiparticles in the outgoing scattering
channels will have to be investigated in terms of a two-electron (or two-hole) picture
if one is interested in studying nonlocal correlations in real time.

In the last few years, several authors [37–40, 42, 43, 45, 48–50, 52, 53, 56] have ad-
dressed the emission of electron pairs through two distant contacts in a language
which explicitly deals with electrons above the normal Fermi level. The mechanism
that describes this current is usually addressed in the literature as crossed Andreev
reflection effect (CARE). Here we investigate the emission of electron pairs from a
superconductor into a normal metal through tunneling interfaces of different geomet-
rical shapes and potential barriers. With this goal in mind, we devote Sec. 2.2 to
rigorously establish the equivalence between the pictures of two-electron emission and
Andreev reflection of an incident hole. We argue extensively that each picture reflects
a different choice of chemical potential for the normal metal, a point also noted in
Ref. [73] . After a precise formulation of the problem in Sec. 2.3, we derive a real
space tunneling Hamiltonian in Sec. 2.4 that accounts for the fact that electrons with
different perpendicular energy are transmitted with different probability through the
interface. In Sec. 2.5 we study the structure of the perturbative calculation that, for
vanishing temperatures and voltages, will yield the electron current to lowest order
in the tunneling Hamiltonian. Sec. 2.6 concerns itself with the angular dependence
of the current through a broad NS interface, providing the connection with calcula-
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Figure 2.1: Hole Andreev reflection vs two-electron emission: (a) When µS is used
as the reference chemical potential both in S and N, a typical scattering process at
the NS tunneling interface for eV ≡ µS − µN > 0 is that of incoming holes with
energies between µS and µS + eV that are most often normally reflected and only
rarely Andreev reflected. (b) If, alternatively, µN is used to define quasiparticles in
N, the many incoming or outgoing holes are viewed as a vacuum of quasiparticles.
The outgoing electron generated in a rare Andreev reflection event appears now as
a spontaneously emitted electron above µS. Such an event causes an outgoing hole
state to be empty. This is now perceived as the emission of a second electron with
energy between µN and µS. Tracking the spin and the momentum component parallel
to the interface leads to the picture of two electrons emitted with opposite spin and
with opposite parallel momenta.

tions based on the standard quasiparticle scattering picture [127,128]. In Sec. 2.7 we
investigate the tunneling current through a circular NS interface of arbitrary radius,
paying attention not only to the total value of the current but also to its angular dis-
tribution and to the underlying two-electron angular correlations. We also investigate
how the thermodynamic limit is achieved for broad interfaces. Sec. 2.8 deals with
the electron current through an interface made of two distant small holes, focussing
on the distance dependence of the contribution stemming from nonlocally entangled
electrons leaving through different holes. In Sec. 2.9 we investigate the commonly
used energy-independent hopping model and prove that it violates unitarity, leads
to a divergent thermodynamic limit, and yields a wrong distance dependence for
the current contribution coming from nonlocally entangled electrons. In Sec. 2.10
we comment on some very recent experiments related to the observation of nonlocal
Andreev current [120,129,130]. A concluding summary is provided in Sec. 2.11.

2.2 Two-electron emission vs. Andreev reflection

In a biased NS tunneling interface in which e.g. the superconductor chemical po-
tential is the greatest, one expects current to be dominated by the injection of electron
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pairs from the superconductor into the normal metal if the voltage difference V and
the temperature T are sufficiently low, single-electron tunneling being forbidden by
the energy required to break a Cooper pair. Specifically, one expects two-electron
tunneling to dominate if kBT, eV ¿ ∆, where ∆ is the zero-temperature supercon-
ductor gap. Simple and unquestionable as this picture is, it is not clear how it can be
quantitatively described within the popular Bogoliubov - de Gennes (BdG) quasipar-
ticle scattering picture [124, 131, 132]. While it leaves the BCS state unchanged, the
emission of two electrons into the normal metal involves the creation of two quasi-
particles, something that is not possible within the standard BdG formalism, where
the quasiparticle number is a good quantum number and the quasiparticle scattering
matrix is thus unitary. The conservation of quasiparticle current is a consequence of
the implicit assumption contained in the conventional BdG scheme that the reference
chemical potential used to identify quasiparticles in the normal metal is the super-
conductor chemical potential µS. However, as shown below, one does not need to be
constrained by such a choice.

In the mean field description of inhomogeneous superconductivity provided by the
BdG formalism, the Hamiltonian is given by

H = E0 +
∑
nσ

εnγ
†
nσγnσ, (2.1)

where E0 is the condensate energy and γ†nσ creates a quasiparticle of energy εn, spin
quantum number σ and wave function [un(r), vn(r)] satisfying the BdG equations

[
H0 − µS ∆

∆∗ −H∗
0 + µS

] [
un

vn

]
= εn

[
un

vn

]
, (2.2)

where H0 = −~2∇2/2m+U is the one-electron Hamiltonian. In the standard conven-
tion, one adopts solutions such that εn−µS > 0. However, a fundamental property of
the BdG equations [131,133,134] is that, for every quasiparticle n, σ of energy εn > µS,
there exists another solution n′, σ′ with spin σ′ = −σ, energy εn′ = −εn + 2µS < µS

and wavefunction (un′ , vn′) = (−v∗n, u∗n). These two solutions are not independent,
since creating quasiparticle n, σ is equivalent to destroying quasiparticle n′,−σ [134].
More specifically, γ†n↓ = γn′↑, and γn↑ = −γ†n′↓.

In the case of a normal metal, where quasiparticles are pure electrons or pure holes,
the above property implies that creation of a quasiparticle of energy εn > µS and wave
function (0, vn) (i.e. a pure hole) corresponds to the destruction of a quasiparticle
of energy ε′n = 2µS − εn < µS and wave function (−v∗n, 0) (i.e. a pure electron). If
vn(r) ∼ exp(ikh · r), the existence of a hole of momentum kh, with kh < kF , and
energy ε > µS corresponds to the absence of an electron in the state of wave function
v∗n(r) ∼ exp(−ikh · r) with energy ε′ = 2µS − ε < µS.

In a biased NS tunneling structure, the normal metal has a different chemical
potential µN = µS − eV . Without loss of generality, we may assume µN < µS. If
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we release ourselves from the standard BdG constraint of using µS as the reference
chemical potential even on the normal side, a clearer picture is likely to emerge.
We may decide that, in the energy range µN < ε′ < µS, we switch to the opposite
convention for the identification and labeling of quasiparticles. In other words, we
decide to use µN as the reference chemical potential. Translated to the example of
the previous paragraph, we pass to view the occupation of the hole-type quasiparticle
state of wave function (0, vn) and energy ε > µS as the emptiness of the electron-type
quasiparticle state of wave function (−v∗n, 0) and energy ε′ < µS. Conversely, the
absence of quasiparticles in (0, vn) is now viewed as the occupation of (−v∗n, 0), i.e.
as the existence of an electron with wave function −v∗n(r) and energy ε′ between µN

and µS.

The consequences that this change of paradigm has on the way we view transport
through an NS interface can be more clearly appreciated in Fig. 2.1. In the standard
BdG picture represented in Fig. 2.1(a), with µS as the reference chemical potential,
the “in” state is that of many holes impinging on the NS interface from the N side,
with energies between µS and µS + eV . Since ours is a tunneling structure, normal
reflection is the dominant scattering channel and only one hole is Andreev reflected as
an electron (quasiparticle transmission is precluded at sufficiently low temperatures
and voltages). Thus the “out” state is that of many holes and only one electron
moving away from the surface, all with energies also between µS and µS + eV , since
quasiparticle scattering is elastic. Given the unitary character of quasiparticle scatter-
ing in the BdG formalism, the existence of an outgoing electron requires the outgoing
hole quasiparticle state at the same energy to be empty, due to the incoming hole
that failed to be normally reflected. The absence of such an outgoing hole is clearly
shown in Fig. 2.1(a).

If we now shift to µN as the reference chemical potential, the picture is somewhat
different. The many impinging holes on the surfaces are now viewed as the absence
of quasiparticles, i.e. the “in” state is the vacuum of quasiparticles. The one electron
that emerged from a rare Andreev process continues to be viewed as an occupied
electron state, shown above µS in Fig. 2.1(b). The many outgoing holes of the BdG
picture are again viewed as an absence of quasiparticles. The second outgoing electron
that is needed to complete the picture of two-electron emission corresponds to the
empty outgoing hole state of the BdG picture which originates from the hole that
failed to be normally retro-reflected. It is shown in Fig. 2.1(b) with energy between
µN and µS. As is known from the theory of quasiparticle Andreev reflection, the
outgoing electron of Fig. 2.1(a) follows the reverse path of the incident hole (conjugate
reflection). Therefore the two electrons in Fig. 2.1(b) have momenta with opposite
parallel (to the interface) components and the same perpendicular component, i.e.
they leave the superconductor forming a V centred around the axis normal to the
interface. Conservation of the spin quantum number through the barrier completes
the picture of two electrons emitted into the normal metal in an entangled spin singlet
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Figure 2.2: Schematic lateral view of the NS tunneling structures studied in this
paper: (a) circular interface of arbitrary radius R and (b) interface made of two small
holes at a distance r from each other. The rest of the NS interface is assumed to be
opaque.

state 1.

In summary, we have rigorously established the equivalence between the pictures of
Andreev reflection and two-electron emission, noting that they emerge from different
choices of the chemical potential to which quasiparticles in the normal metal are
referred, µS in the standard BdG picture, and µN in the scenario which contemplates
the spontaneous emission of two electrons. For simplicity, and because it better fits
our present need, we have focussed on the case of a tunneling structure. However, the
essence of our argument is of general validity. Here we just note that, in the opposite
case of a transmissive NS interface [124,135], the same argument applies if, exchanging
roles, Andreev reflection passes to be the rule while normal reflection becomes the
exception. In that case, charge accumulation and its accompanying potential drop,
which are generated by normal reflection [136], will be essentially nonexistent.

2.3 Formulation of the problem

As has been said, an extensive body of literature has been written on the various
aspects of electron transport through a NS interface [36,38,39,41,45,46,48,50,122–128,
131–134,136–140]. Generally those works have focussed on the case of broad interfaces
or point contacts [132,139]. Our goal here is to analyze the current of spin entangled
Cooper pairs from a BCS bulk superconductor into a bulk normal metal through an
arbitrarily shaped insulating junction in the tunnel limit. Apart from the desire to
explore novel types of NS structures, we are also motivated by the need to investigate
in depth the two-electron emission picture, which is likely to be useful in the design

1Note here, nevertheless, that the BdG picture doesn’t account for the singlet entanglement of
the two emitted electrons.
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of quantum communication devices. We wish to consider explicitly geometries of the
sort depicted in Fig. 2.2, i.e. a 2D planar interface of arbitrary radius R, presented
in Fig. 2.2(a), and two small orifices separated by a distance r, shown in Fig. 2.2(b).
It is assumed that, outside the designed region, the interface is opaque to the flow
of electrons. For simplicity, both the normal and the superconducting electrodes are
taken to be ballistic. An advantage of the tunneling regime is that the proximity
effect may be neglected, i.e. we assume that the gap function drops sharply at the NS
interface and that self-consistency in the gap may be safely neglected [134]. Another
benefit is that we deal at most with two chemical potentials, since the low scale of
tunneling currents guarantees that the normal metal is close to equilibrium [136] and
that no phase slips develop within the superconductor [141]. Inelastic processes at
the interface will also be ignored [142].

We are interested in a conventional (s-wave) superconductor because it may act
as a natural source of spin-entangled electrons, since its electrons form Cooper pairs
with singlet spin wave functions and may be injected into a normal metal. The
superconductor, which is held at a chemical potential µS, is weakly coupled by a
tunnel barrier to a normal metal which is held at µN . By applying a bias voltage
V = (µS − µN)/e such that eV > 0, transport of entangled electrons occurs from
the superconductor to the normal metal. We focus on the regime kBT ¿ eV ¿
∆. Since δ ≡ ∆/EF ∼ 10−4 in a conventional superconductor, rearrangement of
the potential barrier due to the voltage bias can be also neglected. However, the
effect of a finite, small δ will often be tracked because pairing correlations (and thus
nonlocal entanglement) decays on the scale of the coherence length ξ0, which is finite
to the extent that ∆ is nonzero. For convenience, we assume that the superconductor
normal-state properties (m, kF , etc.) are the same as for an ordinary metal.

We will use a tunneling Hamiltonian approach and explicitly consider the emission
of two electrons from the superconductor, a viewpoint that will be mandatory in
contexts where the late evolution of correlated electron pairs in the normal metal is
to be investigated.

2.4 Three-dimensional tunneling Hamiltonian

The Bardeen model for electron tunneling [143] assumes that a system made up
of two bulk metals connected through an insulating oxide layer can be described by
the Hamiltonian

H = HL + HR + HT . (2.3)

Here HL and HR are the many-body Hamiltonians for the decoupled (i.e. unper-
turbed) electrodes, the superconductor being on the left and the normal metal on the
right. The connection between both electrodes is described by the tunneling term HT
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(see e.g. Ref. [144]):

HT =
∑

kqσ

Tkq c†kσ cqσ + H.c. (2.4)

Here c†kσ is the creation operator in the normal metal of the single-particle state
of orbital quantum number k and spin σ, whereas cqσ destroys state q, σ in the
superconductor and Tkq is the matrix element connecting both states. We assume
a perfect interface defined by a square barrier U(r, z) = U0Θ(z + w/2)Θ(w/2 − z)
(hereafter r refers to the in-plane coordinate).

If χq(r, z) are the left-side stationary waves for a potential step UL(r, z) = U0Θ(z+
w/2) and χk(r, z) behaves similarly for UR(r, z) = U0Θ(w/2 − z), Bardeen [143]
showed

Tkq =
−~2

2m

∫
dr

[
χ∗k(r, z)

∂

∂z
χq(r, z)− χq(r, z)

∂

∂z
χ∗k(r, z)

]

z=z0

, (2.5)

where z0 lies inside the barrier, i.e. Jkq(r, z0) ≡ (i/~)Tkq is the matrix element of
the z component of the current operator (current density integrated over coordinate
r). 2 Due to charge conservation, Jkq is independent of the choice of point z0 ∈
[−w/2, w/2]. The unperturbed wave functions are of the form

χk(r, z) =
eik‖r
√

A
ϕkz(z), (2.6)

where the exact shape of ϕkz(z) depends on the barrier height. Thus,

Tkq =
τ√

ΩLΩRN(0)
δ(k‖ − q‖) L(kz, qz) . (2.7)

Hereafter, the volume of each metal ΩL,R is taken equal to Ω = AL, A being the area
of the interface and L the length of each semi-infinite metal. N(0) is the 3D one-spin
electronic density of states of the normal metal at the Fermi level: N(0) = k3

F /4π2EF .
We define the transparency of the barrier as

τ ≡ 4

√
EF

U0

e−p0w , (2.8)

where p0 ≡
√

2mU0/~. In the particular case p0w À 1 and EF ¿ U0, τ coincides
with the probability amplitude that an electron with perpendicular energy Ez = EF

traverses the barrier. L(kz, qz) in Eq. (2.7) captures the dependence of the hopping
energy on the z momentum component. Some authors take it as constant, but we
shall argue in Sec. 2.9 that its kz, qz dependence is crucial for a sound description of
3D transport problems.

2Note that Tkq has energy units.
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For a square barrier, we may define u ≡ U0/EF , %z ≡ qz/kF , κz ≡ kz/kF , and
write

L(kz, qz) = kz qz a(κz, %z) exp {p0w [1− a(κz, %z)]} , (2.9)

where

a(x, y) ≡ [b(x) + b(y)]/2 , (2.10)

b(x) ≡
√

1− x2/u . (2.11)

For high barriers (u →∞) we have a(x) → 1. Then,

Tkq ' τ

ΩN(0)
δ(k‖ − q‖) kz qz . (2.12)

If we make U0 → ∞ while keeping the electron transmission probability finite, we
are implicitly assuming that the barrier becomes arbitrarily thin (w → 0), i.e. we
are taking it to be of the form V (z) = Hδ(z), as popularized in Ref. [124]. On the
other hand, since the height of the barrier is judged in relation to the perpendicular
energy Ez ≤ EF < U0, it is clear that, given U0 and w, Eq. (2.12) becomes correct
for sufficiently small kz, qz. In other words, Tkq behaves identically for u → ∞ or
kz, qz → 0. As a consequence, such bilinear dependence of Tkq for sufficiently small
kz, qz may be expected to hold for arbitrary barrier profiles within the tunneling
regime. We note that Eq. (2.12) differs from the result obtained in Ref. [145] for the
low energy hopping.

2.4.1 Validity of the tunneling Hamiltonian model: momen-
tum cutoff

We wish to quantify the idea that a perturbative treatment of Bardeen’s tunneling
Hamiltonian is valid only when it involves matrix elements between weakly coupled
states [143,146].

The transmission probability for a low energy electron incident from the left can
be written

T (Ez) = Wq/Jq , (2.13)

where Jq is the current probability carried by the incoming component of the sta-
tionary wave q (note that it has units of inverse time), and

Wq =
2π

~
∑

k

|Tkq|2δ(Ek − Eq) (2.14)

is the tunneling rate. Using Eqs. (2.7) and (2.9), Bardeen’s theory yields

T (Ez) = 16
Ez

U0

(
1− Ez

U0

)
e−2pzw , (2.15)
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where pz =
√

2m(U0 − Ez)/~. On the other hand, an exact calculation using match-
ing of wave functions [147] gives for a square barrier and for Ez < U0

T exact(Ez) =

[
cosh2(pzw) +

1

4

(U0 − 2Ez)
2

U0Ez − E2
z

sinh2(pzw)

]−1

, (2.16)

which recovers the tunneling result (2.15)3 if we make the approximation

sinh(pzw) ≈ cosh(pzw) ≈ epzw/2 . (2.17)

Thus we adopt as a criterion of the validity of Bardeen’s approximation that Eq.
(2.17) holds within a certain accuracy, which from (2.15), implies T (EF ) ¿ 1. This
defines an upper energy cutoff Ec in the various sums over electron states, which is
the maximum energy for which the approximation (2.17) is valid. For the square
barrier, Ec ' U0 − ~2/2mw2.

For processes described by amplitudes which are first order in HT , and as long as
U0 is high enough compared to EF to fulfill condition (2.17) for all relevant Ez, all
electron momenta lie within the applicability of the tunnel limit and we may use the
tunneling Hamiltonian safely. That is the case of the tunnel current through a NN
interface or the quasiparticle tunnel current through a NS interface.

The situation is different for Andreev transport through a NS interface, since it
requires the coherent tunneling of two electrons. Then, the leading contribution to
the tunneling amplitude is quadratic in HT and the final transmission probability is
sensitive to the existence of intermediate virtual states where only one electron has
tunneled and a quasiparticle above the gap has been created in the superconductor.
Unlike the weighting factors of the initial and final states, which are controlled by
the Fermi distribution function, the contribution of the virtual intermediate states
decays slowly with energy and the cutoff Ec may be reached. In Sec. 2.5 we show
that there are two cases where the cutoff can be safely neglected, namely, the limit
of high barrier (u À 1) and the limit of small gap (δ ¿ 1).

2.4.2 Tunneling Hamiltonian in real space

One of our main goals is to investigate transport through tunneling interfaces of
arbitrary shape [149] that are otherwise uniform. For that purpose we need a reliable
tunneling Hamiltonian expressed in real space. Our strategy will be to rewrite Eq.
(2.4) as an integral over the infinite interface and postulate that a similar Hamilto-
nian, this time with the integral restricted to the desired region, applies to tunneling
through the finite-size interface. The discontinuity between the weakly transparent
interface and the completely opaque region causes some additional scattering in the

3The low-energy linear dependence T (Ez) ∼ Ez and the related bilinear dependence Tkq ∼ kzqz

is implicit in Ref. [148]. We note, however, that here we find perfect agreement between Bardeen’s
perturbative method and the exact results in the tunneling limit.
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electronic wave functions that enter the exact matrix element. However, this effect
should be negligible in the tunneling limit. In fact, we provide in Appendix A an
independent derivation of the continuum results shown in this section, which starts
from a discrete tight-binding Hamiltonian.

Thus, in (2.4) we introduce the transformations

c†kσ =

∫

A

dr

∫
dz χk(r, z) ψ†N(r, z; σ) (2.18)

cqσ =

∫

A

dr

∫
dz χ∗q(r, z) ψS(r, z; σ) (2.19)

where the wave functions χq and χk are, respectively, solutions of HL and HR and

are given in (2.6). ψ†N(r, z; σ) and ψS(r, z; σ) are the field operators in the normal
and superconducting metals.

Invoking Eq. (2.7) and the completeness of plane waves in the x, y plane [which
yields a term δ(r− r′)], we obtain

HT =
∑

σ

τ

4π2N(0)

∫

A

dr

∫
dz′

∫
dz L̃(z, z′) ψ†N(r, z; σ) ψS(r, z′; σ) + H.c. , (2.20)

where

L̃(z, z′) =
1

Lz

∑

kz ,qz>0

ϕkz(z) ϕ∗qz
(z′) L(kz, qz) . (2.21)

Since the initial Hamiltonian (2.4) connects states which overlap in a finite region
below and near the barrier, it is logical that the real space Hamiltonian (2.20) is
non-local in the z-coordinate. An interesting limit is that of a high and (to keep
transmission finite) thin barrier, i.e. the delta barrier limit. Then, the perpendicular
wave functions can be precisely written

ϕkz(z) =
√

2/L sin(kzz), z ≥ 0 (2.22)

and similarly for the left electrode. We introduce such wave functions in Eq. (2.21)
and invoke the identity (hereafter L →∞)

1

L

∑

kz>0

kz sin(kzz) = −δ′(z), (2.23)

where the volume per orbital in kz-space is π/L. Then, to leading order in u−1 ¿ 1,
Eq. (2.20) yields

HT =
∑

σ

τ

8π2N(0)

∫

A

dr
∂ψ†N(r, z; σ)

∂z

∣∣∣∣∣
z→0+

∂ψS(r, z′; σ)

∂z′

∣∣∣∣
z′→0−

+ H.c. (2.24)
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If we replace the thermodynamic area A by a specific finite area, the real space
Hamiltonian (2.24) can be used to describe tunneling through interfaces of arbitrary
shape. As we have said, in Appendix A we provide an alternative derivation which
makes Eq. (2.24) appear as the natural continuum limit of the hopping Hamiltonian
in a regularized tight-binding representation. We note that the tunneling Hamiltonian
(2.24) may also be obtained if the r.h.s. of Eq. (2.22) is replaced by a plane wave
representation.

From Eq. (2.24) we conclude that apparently reasonable choices of local tunneling
Hamiltonian such as those ∝ ∫

ψ†SψN lead to unphysical results in 3D. This point will
be discussed in depth in Sec. 2.9.

To describe tunneling in real space, rather than starting from Hamiltonian (2.20),
or its limiting version (2.24), it is more convenient in practice to go back to Eq. (2.7)
and make the replacement δ(k‖ − q‖) → (2π)−2

∫
A

dr ei(k‖−q‖)·r, with A finite. Then
Eqs. (2.20) and (2.21) may equivalently be written

HT =
∑

kqσ

τ(2π)−2

N(0)Ω

∫

A

dr ei(k‖−q‖)·rL(kz, qz)c
†
kσ cqσ + H.c. (2.25)

If we make L(kz, qz) = kzqz, it is easy to prove that (2.25) becomes (2.24).

2.5 Perturbative calculation of the stationary cur-

rent

Following Ref. [38], we write the stationary electron current from the supercon-
ductor to the normal metal as

INS = 2e
∑

if

Wfi ρi , (2.26)

where Wfi is the transition rate at which two electrons tunnel from the superconductor
into the normal metal, and ρi is the stationary occupation probability for the entire
system to be in the state |i〉. We calculate the transition rate with a T -matrix
approach [150],

Wfi =
2π

~
|〈f | T̂ (εi) |i〉|2 δ(εf − εi) . (2.27)

The T -matrix can be written as a power series in the tunnel Hamiltonian HT ,

T̂ (ε) = HT + HT

∞∑
n=1

[G0(ε)HT ]n (2.28)

where G0(ε) = (ε − H0 + i0+)−1 is the retarded Green function for the decoupled
system.



Chapter 2: Entangled electron current through finite size NS tunneling structures 33

At zero temperature the initial state is |i〉 = |F〉 ⊗ |BCS〉, where |F〉 is the filled
Fermi sea ground state of the normal metal and |BCS〉 is the BCS ground state of
the superconductor. The state |i〉 is the vacuum of quasiparticles if these are referred
to µS in the superconductor and to µN = µS− eV in the normal metal (see Sec. 2.2).
In the final state

|f〉 =
1√
2
(c†k1↑c

†
k2↓ − c†k1↓c

†
k2↑)|i〉 , (2.29)

i.e. the superconductor remains unperturbed within the BCS description, since an
entire Cooper pair has been removed, and two singlet-correlated electrons hover above
the normal Fermi sea 4. In the ensuing discussion we take εi = 2µS ≡ 0.

Since we wish to focus on the regime kBT ¿ eV ¿ ∆, single electron emission
is forbidden due to energy conservation, because it requires the breaking of a Cooper
pair. Therefore, to leading order in HT , we may approximate

T̂ (0) ≈ T
′′≡ HT G0 HT (2.30)

and so we write

〈f |T̂ (0)|i〉 =
1√
2
〈(ck2↓ck1↑ − ck2↑ck1↓) T

′′〉 . (2.31)

We insert a complete set of single-quasiparticle (virtual) states, i.e.

11 =
∑

kqσσ′
γ†qσc

†
kσ′|i〉〈i|ckσ′γqσ ,

between the two HT in (2.30) and we use the fact that the resulting energy de-
nominator |i0+ − ξk − Eq| ≈ |Eq|, since ξk ≡ ~2k2/2m − µN → 0 when eV → 0.
To see this, one must note that the energy conservation implies εf = εi; therefore,
εf = ξk1 + ξk2 − 2eV = 2µS = 0. Thus, when eV → 0, one may write ξk1 ≈ −ξk2 ≈ 0
. We also make use of uqvq = u−qv−q for a s-wave superconductor 5. Finally, we get

〈f |T̂ (0)|i〉 = 2
√

2〈ck2↑c
†
k2↑ck1↓c

†
k1↓〉

∑
q

〈cq↑c−q↓〉
Eq

Tk1qTk2,−q (2.32)

where Eq = [(~2/2m)2(q2−k2
F )2+∆2]1/2 is the quasiparticle energy and Fq ≡ 〈cq↑c−q↓〉

is the condensation amplitude in the state q [131].
At zero temperature we have Fq = ∆/2Eq. Thus, in the summation of Eq. (2.32),

the contribution of high energy virtual states is weighted by the Lorentzian Fq/Eq,

4Note that, as defined in Eq. (2.29), the final state (k1,k2) is identical to the state (k2,k1).
Thus, when summing over final states, one must avoid double counting. Specifically, in Eq. (2.26),∑

f is to be understood as 1
2

∑
k1,k2

, where
∑

k1,k2
is an unrestricted sum over indices k1,k2.

5If we had considered a final state 〈f | with an entangled spin triplet pair over the normal Fermi
sea (instead of a singlet), this property of the BCS coherence factors uq and vq would have made
the matrix element of Eq. (2.31) identically zero.
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of width ∆ and centred around EF . We already mentioned in the previous section
the need for a high-energy cutoff Ec to prevent the inclusion of states for which
the tunneling approximation is not valid. However, in the limit ∆/EF → 0, the
Lorentzian distribution becomes a delta function and the results are independent of
the cutoff, which can be safely taken to infinity. A similar situation is found in the
limit U0 À EF , for which the sum in Eq. (2.32) converges before reaching the energy
Ec above which Bardeen’s approximation is no longer valid. In any of these two limits
(∆/EF , EF /U0 ¿ 1), it is correct to take Ec →∞.

2.6 Total current and angular distribution through

a broad interface

The current through a NS junction is most easily calculated when the interface
section is much bigger than λF . We shall refer to it as the broad interface or ther-
modynamic limit. Its detailed understanding is of interest for later reference in the
investigation of finite size interfaces. For kBT ¿ eV ¿ ∆, the set of equations in the
previous section yields

INS = IV
τ 4

2

∫ π/2

0

dθ sinθ g(θ) , (2.33)

where g(θ) is the angular distribution (θ being the angle between the outgoing electron
momentum and the direction normal to the interface) and

IV ≡ 1

2
e2 V N(0) vF A = JV A , (2.34)

with V the applied voltage, A the interface area, and vF the Fermi velocity. Eq.
(2.34) may be written as IV = (2e2/h)NV , where N = Ak2

F /4π is the number of
transverse channels that fit in an interface of area A. Thus, IV can be interpreted as
the current that would flow through a transmissive [T (Ez) = 1 for all Ez] normal-
normal interface with the same area and subject to the same voltage bias. The τ 4

dependence of INS reflects the simultaneous tunneling of two electrons.
Using the previous definition %z ≡ qz/kF , the angular distribution for the current

through an arbitrary square barrier is 6

g(θ) = 2 cos3 θ e2p0w[1−b(cos θ)]

×
[

2

π

∫ %c

0

d%z
δ

(%2
z − cos2 θ)2 + δ2

%2
z [a(%z, cos θ)]2 ep0w[1−b(%z)]

]2

, (2.35)

6A study of the angular dependence of Andreev reflection in the broad interface limit has been
presented in Ref. [151]. However, it is restricted to a delta barrier interface and considers the case
where N is a doped semiconductor.
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where %c =
√

Ec/EF is the cutoff and the functions a and b were defined in Eqs.
(2.10) and (2.11).

For δ → 0, we have

lim
δ→0

∫ %c

0

d%
δ

(%2−x2)2+ δ2
% f(%) =

π

2
f(x) , (2.36)

if, as is the case, %c > 1 ≥ |x|. Therefore, in the limit δ → 0, Eq. (2.35) yields

g(θ) = 2 e4p0w[1−b(cosθ)][b(cosθ)]4 cos5θ . (2.37)

For large barriers (u À 1) and finite δ we find (with %c →∞)

g(θ) = cos5θ + cos3θ
√

cos4θ + δ2 (2.38)

= 2 cos5 θ
[
1 +O(δ2)

]
. (2.39)

Combining Eqs. (2.33) and (2.38), we obtain for the total current

INS =
1

12
IV τ 4

[
1 + (1 + δ2)3/2 − δ3

]
(2.40)

=
1

6
IV τ 4

[
1 +O(δ2)

]
. (2.41)

However, if the cutoff %c remains finite, Eq. (2.41) must be replaced by

INS =
1

6
IV τ 4

[
1− 24

5π

δ

%c

+O(δ2)

]
, (2.42)

i.e. a finite cutoff qualitatively affects the leading low-δ dependence of INS.
The underlying physics goes as follows. The product of hopping matrix elements

appearing in (2.32) satisfies

T ∗
k1q

T ∗
k2,−q ∝ k1z k2z q2

z δ(k1‖ + k2‖)δ(k1‖ − q‖) . (2.43)

Thus, when crossing the barrier, electrons forming a Cooper pair of momenta (q,−q)
undergo the following process: Their opposite interface-parallel momenta are con-
served (k1‖ = q‖ and k2‖ = −q‖). By contrast, one of their perpendicular momentum
components (more specifically, the negative one pointing away from the interface) is
reversed so that both electrons enter the normal metal with perpendicular momenta
k1z, k2z > 0. In the limit of eV → 0 the modulus difference between k1z and k1z is
negligible. This means that the electron current through a broad interface will prop-
agate into the normal lead in the form of two rays which are symmetric with respect
to the direction normal to the interface. Due to axial symmetry, g is only a function
of the zenithal angle θ ∈ [0, π/2].

The normalized angular distributions for several barrier heights are depicted in
Fig. 2.3 in the limit δ → 0. The lowest barrier which we have considered has u = 1.1.
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Figure 2.3: Angular dependence of the normalized tunnel current ranging from
U0/EF → ∞ for the outer (cos5 θ) curve to U0/EF = 1.1 for the inner one. Fi-
nite barriers have a width w = 5λF . Observe how the angular distribution focalizes
around the perpendicular direction as the barrier hight decreases.

This means that, for a typical value of EF = 5 eV, the difference between the height
of the barrier and the Fermi energy is 0.5 eV, i.e. large enough to ensure that the
junction operates in the tunneling regime. In particular, following the arguments of
Subsec. 2.4.1, in this case the error incurred by using the tunneling approximation of
Eq. (2.15) instead of the exact one of Eq. (2.16) is less than 2× 10−7% for the worst
case on normal incidence to the interface. In Fig. 2.3, finite-height barriers are taken
to have a width w = 5λF . For large U0 we reproduce the analytical cos5 θ behaviour
given in Eq. (2.39). As the barrier height decreases, the angular distribution becomes
more focussed in the forward direction because transmission is more sensitive to the
perpendicular energy. Thus, the relative fraction of Fermi surface electrons crossing
the interface with Ez close to the highest value EF increases. That majority of
transmitted electrons have low parallel momenta and, accordingly, a characteristic
parallel wave length much larger than λF . We will see later that this perpendicular
energy selection bears consequences on the length scale characterizing the dependence
of the total current on the radius of the interface.

In general, knowledge of the current angular distribution is physically relevant, as
one is ultimately interested in directionally separating the pair of entangled electron
beams for eventual quantum information processing. To acquire a more complete
picture, we may compare the previous results with the case of a NN interface. In that
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case the total tunnel current is

INN = IV τ 2

∫ π/2

0

dθ sinθ g(θ) , (2.44)

where IV is given in Eq. (2.34) and, for large u,

g(θ) = 2 cos3 θ . (2.45)

Thus we see that electron transport through a tunneling NN interface also exhibits
focussing which is however less sharp than in the NS case [see Eq. (2.39)]. The
term τ 2 in Eq. (2.45) reflects the dominance of single-electron tunneling at the NN
interface. Finally, we may compare Eqs. (2.39) and (2.45) with the cos θ distribution
law exhibited by electron current in the bulk of a disordered wire 7.

2.6.1 Connection with the multi-mode picture

We could have derived the angular distributions in Eqs. (2.33), (2.39), (2.44)
and (2.45) following the scattering theory of conduction in normal [152–154] and
normal-superconducting [138] multichannel wires. For an NN interface in the zero
temperature limit and for a small applied voltage, the Landauer-Büttiker formalism
gives us the relation between conductance and transmission probabilities at the Fermi
energy

GNN =
2e2

h
Tr[t†(EF )t(EF )] =

2e2

h

N∑
n=1

Tn =
2e2

h

∑
n,m

TRL
n,m . (2.46)

Here, the matrix t is the off-diagonal block of the scattering matrix describing the
scatterer, and Tn (n = 1, 2, ...N) are the eigenvalues of the transmission matrix t†t at
the Fermi energy. Since the trace of t†t is a basis invariant expression, it is possible to
express the conductance in terms of the transmission probabilities TRL

mn = |sRL,mn|2,
where s is the scattering matrix, for carriers incident in channel n in the left lead L
and transmitted into channel m in the right lead R. In this basis the Hamiltonians
of the left and right leads (the reservoirs) are diagonal, and the conductance can be
expressed like in the last equality in Eq. (2.46). In the case of a broad interface whose
dimensions equal those of the reservoirs, which is the one we are considering here,
since the parallel momentum to the interface k|| is a conserved quantity, it already
represents the set of eigen-channels of our problem. Therefore, in order to calculate
the conductance of Eq. (2.46), we can consider the transmission probability through
a square barrier of Eq. (2.15). We replace Tn → T (Ez). For Ez/U0 ¿ 1 we have

T (Ez) = 16
Ez

U0

e−2p0w = τ 2 Ez

EF

, (2.47)

7There, under the constraint of a given total current, entropy is maximized by the electron system
adopting a displaced Fermi sphere configuration which exactly yields the cos θ law.
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thus T (Ez) ∝ Ez ∝ cos2 θ. Moreover, the sum over transverse modes can be replaced

by an integration over the zenithal angle,
∑

n → cnst.×∫ π/2

0
dθ sin θ cos θ. Altogether,

the angular distribution follows exactly the cos3 θ law expressed in Eq. (2.45).
A similar line of argument can be made for the Andreev current through a NS

interface, whose conductance according to Beenakker’s formula is given by8

GNS =
2e2

h

N∑
n=1

2 T 2
n

(2− Tn)2
. (2.48)

In the tunneling limit one has Tn ¿ 1 and GNS can thus be approximated as

GNS ' 2e2

h

N∑
n=1

T 2
n

2
. (2.49)

Arguing as we did for the NN conductance, it follows that g(θ) ∝ cos5 θ, which
confirms Eq. (2.39). Therefore, in the tunneling limit there is a one to one cor-
respondence between the conductance calculated with the Bardeen’s Hamiltonian
through the T-matrix approach and the scattering formalism of Landauer-Büttiker
and Beenakker. We note here that, in Refs. [132, 138], the Andreev approximation
was made whereby all the momenta involved are assumed to be equal to kF . In our
language, this corresponds to taking δ → 0 in Eq. (2.35) and thereafter.

Finally, comparison of Eqs. (2.46) and (2.49) also illuminates the contrast between
the factor τ 4/2 in Eq. (2.33) and the factor τ 2 in Eq. (2.44).

2.6.2 Universal relation between NN and NS tunneling con-
ductances

In the case of a normal interface with high barrier, the total current can be inte-
grated to yield

INN =
IV τ 2

2
=

(
2e2

h

)
τ 2

2
NV . (2.50)

Thus τ 2/2 is the average transmission per channel in a 3D geometry 9. In one
dimension (N = 1) one has I1D

NN = (2e2/h)V τ 2. Eqs. (2.34), (2.40), and (2.50)

8As noted in Ref. [132], the equivalence invoked in Eq. (2.46) between the sum of eigenvalues
and the sum of modal transmission probabilities is no longer applicable in Eq. (2.48) because of its
nonlinearity.

9Together with the factor appearing in the definition (2.34), this factor 1/2 yields the 1/4 ge-
ometrical correction given by Ref. [155] and cited in Ref. [124]. We emphasize however that such
1/4 correction applies only to the normal conductance, as derived in Ref. [155], but not to the NS
interface where, rather, the correct geometrical correction is 1/12, as implicitly noted in Eqs. (2.34)
and (2.42).
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suggest the universal relation

IV INS

(INN)2
=

GV GNS

(GNN)2
=

2

3
, (2.51)

where Gi = Ii/V (i = V, NS, NN). Eq. (2.51) indicates that knowledge of GNS and
GNN may allow us to infer GV and, from (2.34), the effective area of a tunneling
interface.

2.6.3 Comparison with the quasiparticle scattering method

Blonder et al. [124] studied transport through a one-dimensional NS interface
modeled by a delta-barrier one-electron potential [U(z) = Hδ(z)] by solving for the
quasiparticle scattering amplitudes. If the dimensionless parameter Z = mH/~2kF

is employed to characterize the scattering strength of the barrier, the tunneling limit
corresponds to Z À 1, for which they obtained I1D

NS = IV /Z4 assuming kBT ¿ eV ¿
∆ ¿ EF (i.e. a low-transmission regime in which Andreev reflection is the only
charge-transmitting channel). Later, Kupka generalized the work of Ref. [124] to
investigate the sensitivity of Andreev and normal reflection to the thickness of the
barrier [127] and to the presence of a realistic 3D geometry [128]. For the case of a
broad interface in the tunneling limit he obtained I3D

NS = IV /6Z4. Therefore, Kupka
found a result identical to Eq. (2.41) (to zeroth order in δ) with τ replaced by 1/Z. In
fact, it is easy to see that, in the case of a delta-barrier with Z À 1, the transparency
defined in Sec. 2.4 is precisely τ = 1/Z. Therefore, comparison of Eqs. (2.39) and
(2.41) with the results of Ref. [128] completes the discussion of Sec. 2.2 by establishing
the quantitative equivalence between the pictures of quasiparticle Andreev reflection
and two-electron (or two-hole) emission. We note that, in Refs. [124, 127, 128], the
Andreev approximation (δ → 0) was made.

2.7 Current through a circular interface of arbi-

trary radius

In this section we investigate transport through a circular NS tunneling interface
of arbitrary radius. The setup is as depicted in Fig. 2.2(a). To make the discussion
more fluent, lengthy mathematical expressions have been transferred to Appendix
B, leaving here the presentation of the main results, which include some analytical
expressions for the limit of small gap and high barrier.

2.7.1 Total current

The most general expression for the current is given in Eq. (B.1). Below we focus
on the limit δ, u−1 ¿ 1. We find three regimes of interest, depending on the value of
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R/λF .

Small radius (R ¿ λF )

This limit is not physically realizable, at least with current materials. However,
it is interesting for two reasons. First, it yields a radius dependence that directly
reflects the entangled nature of the electron current. Second, it can be used as a unit
of current such that, when referred to it, calculated currents have a range of validity
that goes well beyond the geometrical model here considered. That permits a direct
comparison between different theoretical models and experimental setups.

For kF R ¿ 1 we obtain

I(R) ' I0 ≡ 2π

64
JV τ 4k6

F R8. (2.52)

This R8 behaviour is easy to understand. To compute the current we must square the
matrix element between the initial and the final state, i.e. the Cooper pair hopping
amplitude. The tunneling of each electron involves an integral over the interface,
which for kF R ¿ 1 contributes a factor R2 to the amplitude, regardless of the incident
angle. The Cooper pair amplitude becomes ∼ R4, which leads to the R8 behaviour
for the probability.

It is interesting to compare the R8 law here derived with, e.g. the R4 behaviour
of the NN tunnel current (u À 1), namely,

I0 ' π

9
JV τ 2k2

F R4 , (2.53)

or with the R6 dependence for the transmission of photons through a circular aperture
[156].

Eqs. (2.52) and Eq. (2.53) yield the following relation for the narrow interface
conductances:

GNS =
h

4e2
G2

NN (R → 0) . (2.54)

It is important to note that Eq. (2.54) still applies if both conductances are replaced
by their momentum-independent counterparts.

In Fig. 2.4 we plot the current density as a function of the interface radius. Dots
represent the exact calculation taken from Eqs. (B.3) and (B.5), which we have been
able to evaluate numerically for u → ∞ (up to R = 1.65λF ) and u = 10 (up to
R = 3λF ), while solid lines are obtained from a large-radius approximation described
in Appendix B. For u = 1.1 convergence problems prevent us from presenting numer-
ically exact results. We find that the small-radius approximation (∼ R8) is correct
within 1% accuracy up to R ∼ 0.1λF . Above that value it overestimates the current.
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Figure 2.4: Radial dependence of the normalized NS Andreev tunnel current through
a circular interface of radius R for different barrier heights. J(R) ≡ I(R)/πR2 and
J∞ is the current density in the thermodynamic limit. Finite barriers have a width
w = 5λF . Everywhere ∆/EF ¿ 1 is taken. Dots correspond to numerically exact
results. Solid lines are computed with an approximation described in Appendix B
which becomes exact for R/λF À 1. The inset magnifies results for small R.

Intermediate radius (λF < R < ∞)

In this region no analytical expression for the current is possible. Above R ≈ 2λF

even the numerical calculation of Eq. (B.5) (which presumes δ, u−1 ¿ 1) is difficult,
since for large radii we cannot compute five strongly oscillating nested integrals. A
set of two approximations which reduces the number of nested integrals from five to
three is discussed in Appendix B and expressed in Eqs. (B.6) and (B.8).

In Fig. 2.4 we plot I(R)/I(R →∞), which is the total current normalized to the
thermodynamic limit expression (2.33) with A in Eq. (2.34) replaced by πR2. For
finite barriers, w = 5λF has been taken. A free parameter has been adjusted to fit the
numerically exact result in the region where it is available. As explained in Appendix
B, such a scheme is particulary well suited for moderate-to-large radius values. The
inset of Fig. 2.4 shows that, as expected, the approximation fails for small values of
R, where it yields an R4 behaviour instead of the correct R8 law, thus overestimating
the current.

Here we wish to remark that, unlike in the case of a clean NS point contact
[132, 138], the radial current dependence shows no structure of steps and plateaus
as more channels fit within the area of the interface. This is due the fact that we
operate in the tunneling regime, which decreases the height of the possible steps and,
more importantly, to the strongly non-adiabatic features of the structure along the
z-direction.
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Large radius (R →∞)

While a numerically exact calculation is already nonfeasible for R a few times
λF , the approximation described in Appendix B becomes increasingly accurate for
large R. This allows us to conveniently investigate how the broad interface limit
is recovered [see Eqs. (2.33) and (2.41)]. Such a limit is characterized by I(R)
growing with R2, i.e. proportionally to the area, a behaviour also shown by the NN
conductance. Convergence to the thermodynamic limit is much slower for low barriers
than for large barriers. The reason has to do with focussing. The wave length of the
characteristic energies E‖ = E−Ez determines the length scale over which the relative
phase between distant hopping events varies appreciably. This is the distance over
which multiple hopping points (which play the role of multiple “Feynman paths”)
cancel destructively for large radius interfaces. As discussed in the previous section,
low barriers are more energy selective, making most of the electrons leave with Ez

close to EF and thus with small E‖. As a consequence, saturation to the large radius
limit is achieved on the scale of many times λF . By contrast, high barriers are less
energy selective and give a greater relative weight to electrons with low Ez and high
E‖. A large fraction of the electrons has a short parallel wave length. This explains
why, for high barriers, the large R behaviour is reached on a short length scale.

2.7.2 Length scales in the thermodynamic limit

It is known that pairing correlations between electrons decay exponentially on the
scale of the coherence length ξ0 = λF /π2δ. This fact is reflected by the exponential
factors contained in the integrands of the equations for I(R) in Appendix B. Thus
one might expect that the thermodynamic limit relies on such a decay of correlations.

The following argument might seem natural. The double integral over the interface
of area A may be viewed as an integral of the two-electron centre of mass, which yields
a factor A, and an integration over the relative coordinate, which is independent of
A due to a convergence factor which expresses the loss of pairing correlations. The
final current would grow as I ∼ Aξ2

0 ∼ A/δ2. However, as discussed in the previous
subsection, the thermodynamic limit is achieved on a much shorter scale, namely,
the Fermi wave length. If an electron leaves through point r1 one may wonder what
is the contribution to the amplitude stemming from the possibility that the second
electron leaves through r2, eventually integrating over r2. Eq. (2.25) suggests that the
amplitude for two electrons leaving through r1 and r2 will involve the sum of many
oscillating terms with different wave lengths, the shortest ones being ∼ λF . This
reflects the interference among the many possible momenta that may be involved
in the hopping process. Such an interference leads to an oscillating amplitude which
decays fast on the scale of λF , rendering the exponentially convergent factor irrelevant.
Thus, in the thermodynamic limit the current tends to a well defined value for ξ0 →∞
(δ → 0). In Appendix B we provide a more mathematical discussion of this result.
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Figure 2.5: Angular correlation profile (in arbitrary units) of the conditional proba-
bility distribution P (Ω|Ω0) that, in a given tunneling event, an electrons goes into Ω
if the other electron has gone into Ω0. Here we plot P (Ω|Ω0) as a function of Ω for
fixed Ω0 ≡ (θ0, φ0) = (π/4, 0). From left to right the radii are: R = 0.01, 0.5, 1, 3λF .
Observe that, as R increases, the angular dependence of the second electron tends
to be the conjugate of the first one, i.e. the distribution becomes peaked around
Ω = (π/4, π). Note also that, for small R, P (Ω|Ω0) becomes ∝ cos2 θ regardless of
Ω0.

One may also investigate the first correction for small, finite δ. As indicated in
Eqs. (2.40) and (2.41), it increases the current. However, in the presence of a finite
cutoff (%c < ∞), a nonzero value of δ generates the opposite trend. As discussed
in Appendix B, at tiny relative distances between hopping points (|r1 − r2| . δλF ),
the amplitude increases considerably. A finite upper momentum cutoff rounds the
physics at short length scales, thus eliminating such a short-distance increase. The
result is that, with a finite cutoff, the first correction to the δ = 0 limit is a decreasing
linear term in δ, as revealed in Eq. (2.42).

2.7.3 Angular distribution and correlation

We have computed the conditional probability distribution P (Ω|Ω0) for an electron
to be emitted into Ω ≡ (θ, φ) given that the other electron is emitted in a fixed
direction Ω0. Such a distribution is shown in Fig. 2.5 for Ω0 = (π/4, 0). We observe
that, for large R/λF , the angular distribution of the second electron is quite focussed
around Ω = (π/4, π), which is mirror-symmetric to Ω0 [see Fig. 2.5(d)]. As R/λF

decreases, the angular correlation between electrons disappears and, as a function of
Ω, P (Ω|Ω0) becomes independent of the given value of Ω0. In particular it tends to
∼ cos2 θ [see Fig. 2.5(a)].

We may also study the probability distribution that one electron is emitted into
direction Ω regardless of the direction chosen by the other electron. This amounts to
the calculation of an effective g(θ) for a finite radius interface to be introduced in an
equation like Eq. (2.33) to compute the current (by symmetry, such a distribution is
independent of φ). As expected, one finds such effective angular distribution to be
∼ cos5 θ for large R [see Eq. (2.39)], which contrasts with the sharp Ω-dependence of
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the conditional angular distribution P (Ω|Ω0) for given Ω0.

For small R, the effective g(θ) goes like cos2 θ, i.e. it becomes identical to P (Ω|Ω0).
This coincidence reflects the loss of angular correlations. The cos2 θ behaviour may
be understood physically as stemming from a random choice of final k‖, which yields
a cos θ factor (since |k‖| = kF sin θ), weighted by a cos θ reduction accounting for
the projection of the current over the z direction. An equivalent study for a NN
interface yields also g(θ) ∝ cos2 θ. Thus we see that the loss of angular correlations
after transmission through a tiny hole makes the NN and NS interfaces display similar
angular distributions.

The crossover from g(θ) ∝ cos2 θ to cos5 θ as R increases involves a decrease of
the width ∆θ of the angular distribution. A detailed numerical analysis confirms
this result but reveals that ∆θ is not a monotonically decreasing function of R (not
shown).

2.8 Nonlocal entanglement in a two-point inter-

face

Let us turn our attention to a tunneling interface consisting of two small holes,
as depicted in Fig. 2.2(b). By “small” we mean satisfying R/λF ¿ 1. This is
the limit in which the detailed structure of a given hole is not important and the
joint behaviour of the two holes is a sole function of their relative distance r and
the current that would flow through one of the holes if it were isolated. We expect
the conclusions obtained in this section to be applicable to similar interfaces made of
pairs of different point-like apertures such as, e.g. two point-contacts or two quantum
dots weakly coupled to both electrodes [38].

The current through a two-point interface has three contributions. One of them
is the sum of the currents that would flow through each hole in the absence of the
other one. Since the two orifices are assumed to be identical we refer to it as 2I0,
where I0 is given in Eq. (2.52). This contribution collects the events in which the two
electrons tunnel through the same opening. A second contribution Ie(r) comes from
those events in which each electron leaves through a different hole. This is the most
interesting contribution since it involves two non-locally entangled electrons forming
a spin singlet. The third contribution, Ii(r), accounts for the interference between
the previous processes.

If we write

I = 2I0 + Ie(r) + Ii(r) , (2.55)

we obtain for the entangled current in the high barrier limit

Ie(r) = 18I0[B
2(kF r) + F 2(kF r)B2(kF r)] , (2.56)



Chapter 2: Entangled electron current through finite size NS tunneling structures 45

Figure 2.6: Current density through a two-point interface stemming from non-locally
entangled electron pairs, as a function of the distance between points. The dashed
line corresponds to the current obtained using an energy-independent hopping ap-
proximation whereas in the solid line the correct momentum dependence has been
taken into account.

where B(x) is defined in Eq. (B.10) and

F (x) = 3
sin x− x cos x

x3
. (2.57)

For δ ¿ 1, and noting that we are not interested in tiny distances r . δλF , we can
write

Ie(r) = 2I0[F
2(kF r) + F 4(kF r)]e−2r/πξ0 . (2.58)

This is a fast decay because of the geometrical prefactor, which goes like r−4 for
kF r À 1. For instance, Ie(ξ0)/Ie(0) ∼ 10−15, with data taken from Al (ξ0 ' 103λF ).
For possible comparison with other tunneling models it is interesting to write the
entangled conductance Ge(r) ≡ Ie(r)/V in terms of the normal conductance through
one narrow hole, GNN. Using Eq. (2.54), we obtain

Ge(r) =
h

2e2
G2

NN [F 2(kF r) + F 4(kF r)]e−2r/πξ0 . (2.59)

To keep track of the interference terms, it is convenient to adopt a schematic
notation whereby HT = ta + tb is the tunneling Hamiltonian through points a and b.
Then one notes that, as obtained from Eqs. (2.26), (2.27) and (2.30), the total current
can be symbolically written as I ∼ |(ta + tb)(ta + tb)|2. In this language I0 ∼ |tata|2.
The F 2 term in (2.58) corresponds to ∼ |tatb|2 + |tbta|2, while the F 4 term stems from
the interference ∼ (tatb)(tbta)

∗ + c.c. Altogether, Ie(r) ∼ |tatb + tbta|2.
The interference current may be divided into two contributions,

Ii = Ii1 + Ii2 , (2.60)
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corresponding to the different types of outgoing channel pairs which may interfere.
The first contribution stems from the interference between both electrons leaving
through point a and both electrons leaving through point b, Ii1 ∼ (tata)(tbtb)

∗ + c.c.
One obtains

Ii1(r) = 2I0F
2(kF r) . (2.61)

Ii2(r) comes from the interference between the channel in which the two electrons leave
through the same hole and that in which they exit through different openings, Ii2(r) ∼
(tata)(tatb)

∗ + c.c., plus three other equivalent contributions, altogether summing

Ii2(r) = 8I0F
2(kF r)e−r/πξ0 . (2.62)

In the hypothetical case where orifices a and b are connected to different normal
electrodes [e.g. when an opaque barrier divides into two halves the normal metal of
Fig. 2.2(b)], the interference contributions (2.61) and (2.62) would be absent. Then
one would have I = 2I0 + Ie(r). Furthermore, if any mechanism prevents the two
electrons from leaving through the same opening (like, e.g. by means of two quantum
dots weakly coupled to the orifices and properly engineered [38]), then I = Ie(r).

2.9 Failure of the momentum-independent hopping

approximation

It has been common in the literature on the tunneling Hamiltonian to assume
that the tunneling matrix elements appearing in (2.4) are independent of the per-
pendicular momenta kzqz (see, for instance, Ref. [144]). Below we show that, for
three-dimensional problems, such an assumption is unjustified and leads to a number
of physical inconsistencies 10.

For simplicity we focus on the high barrier limit. To investigate the consequences
of the momentum-independent hopping approximation, we replace Eq. (2.12) by

Tkq =
τ

ΩN(0)
δ(k‖ − q‖) k2

F , (2.63)

i.e. we change kzqz by k2
F .

Broad interface. For a large NS junction, we find that the total current in units
of IV diverges (x ≡ cos θ):

INS = τ 4IV

∫ 1

0

dx

x

x2 +
√

x4 + δ2

2(x4 + δ2)
→∞ , (2.64)

10We do not rule out, however, that the errors derived from the use of Eq. (2.63) may cancel in
the calculation of some physical quantities such as e.g. the ratio between the critical current and
the normal conductance of a superconducting tunnel junction [144,157].
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i.e. INS grows faster than A for A → ∞. Eq. (2.64) is the analogue of Eqs. (2.33)

and (2.38), where INS ∼
∫ 1

0
dx (x5 + x3

√
x4 + δ2).

A different divergence occurs for a broad NN tunnel junction:

INN = 2τ 2IV

∫ 1

0

dx

x
→∞ , (2.65)

which contrasts with the finite integral INN ∼
∫ 1

0
dx x3 obtained from inserting (2.45)

into (2.44).
Local Hamiltonian. If one attempts to derive the real space tunneling Hamiltonian

with the assumption (2.63), one obtains an expression identical to that in Eq. (2.20)

with L̃(z, z′) replaced by

M̃(z, z′) =
k2

F

Lz

∑

kz ,qz

ϕkz(z) ϕ∗qz
(z′) . (2.66)

As in Sec. 2.4, we use stationary waves for ϕkz ,qz(z). Invoking the identity

∑

kz>0

sin(kzz) = P 1

z
(2.67)

we obtain

HT =
∑

σ

τk2
F

2π4N(0)

∫
dr

∫ 0

−L

dz

z

∫ L

0

dz′

z′
ψ†N(r, z; σ)ψS(r, z′; σ) + H.c. , (2.68)

where the reference to the principal value has been removed because, in the tunneling
limit, the fields vanish linearly at the origin.

If we had chosen plane wave functions for ϕkz ,qz in Eq. (2.66), we would have
obtained a different Hamiltonian, namely,

HT =
∑

σ

τk2
F

8π2N(0)

∫
drψ†N(r, 0; σ)ψS(r, 0; σ) + H.c. , (2.69)

which is some times proposed in the literature (see e.g. Ref. [39]). This situation,
whereby plane-wave and stationary-wave representations lead to different, both un-
physical, local Hamiltonians contrasts with the scenario obtained with the right ma-
trix element. As noted in Sec. 2.4, the more physical choice (2.12) leads in both
representations (plane and stationary waves) to the correct local Hamiltonian (2.24).
The fact that Eq. (2.63) leads to a wrong real space Hamiltonian which, moreover,
depends on the choice of representation, may be viewed as further proof of the inad-
equacy of the energy-independent hopping model.
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Thermodynamic limit. For a NS interface with δ → 0, a dimensional analysis
for A → ∞ suggests that the total current INS diverges non-thermodynamically like
∼ A2. For a NN interface, we find the divergence A ln A.

Unitarity. The divergences expressed in Eqs. (2.64) and (2.65), as well as the
related anomalous thermodynamic behaviour, could have been anticipated by noting
that, if Tkq is assumed to be independent of energy, then Eq. (2.15) must be multiplied
by (EF /Ez)

2. As a result, the transmission probability at energy Ez, which should
stay smaller than unity, grows instead as T (Ez) ∼ E−1

z for Ez → 0. Such a violation
of unitarity necessarily generates a divergent current in the broad interface limit for
both NN and NS interfaces.

Nonlocally entangled current. Finally, we note that, using (2.63), the nonlocally
entangled current through two distant points is

Ĩe(r) = 2 Ĩ0[F̃
2(kF r) + F̃ 4(kF r)]e−2r/πξ0 , (2.70)

where

F̃ (x) =
sin x

x
, (2.71)

with the tildes generally referring to the momentum-independent approximation.
Here, Ĩ0 = 81I0 is the current through one narrow hole. Correspondingly, the en-
tangled conductance Ge(r) is written like in Eq. (2.59) with F (kF r) replaced by
F̃ (kF r).

Comparison of Eqs. (2.58) and (2.70) indicates that the r-dependence of the geo-
metrical prefactor is markedly different: For growing r, the nonlocally entangled cur-
rent decays much more slowly (r−2) than its momentum-dependent counterpart (r−4).
It is interesting to compare the ratios λ(r) ≡ Ie(r)/Ie(0) and λ̃(r) ≡ Ĩe(r)/Ĩe(0).
While λ(0) = λ̃(0) = 1 by construction, the ratio λ/λ̃ becomes ∼ 6 × 10−4 and
2× 10−7 for r/λF = 20 and 103, respectively.

Interference terms. As expected from the comparison of Eqs. (2.58) and (2.70),
the interference contributions are identical to those discussed in the previous section
with F (kF r) replaced by F̃ (kF r) in Eqs. (2.61) and (2.62).

Generality of the model. An important question is whether our results for the
entangled and interference currents through pairs of tiny geometrical holes apply
to other, more realistic pairs of small interfaces such as two point contacts or two
quantum dots [38]. The fact that the decay with distance of the entangled current
reported in Refs. [37–39,42–45,48,50] follows the same law as Eqs. (2.70) and (2.71)
(except for the F̃ 4 term there neglected), suggests that such is indeed the case. Below
we prove this expectation.

Due to Eq. (2.25), the sum in Eq. (2.32) involves

∑
q

uqvq

Eq

q2
ze
−iq‖·(r1−r2) . (2.72)
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This sum over q is clearly affected by the presence of the q2
z factor, yielding a result

∝ F (kF r), with r = |r1−r2|. In the momentum-independent hopping approximation,
q2
z is replaced by k2

F , rendering the sum ∝ F̃ (kF r). In fact, the two functions are
related:

∂2

∂z2
F̃ (kF

√
r2 + z2)

∣∣∣∣
z=0

=
1

3
k2

F F (kF r) . (2.73)

We note that the distance dependence is determined by the properties of the su-
perconductor and not by those of the normal electrode. If a quantum dot mediates
between the superconductor and the normal metal, then an effective hopping must be
introduced in (2.72) which, however, does not add any new momentum dependence
[see Eq. (11) of Ref. [38]]. Departure from the specific type of contact here consid-
ered will translate only into a different value of I0, the distance dependent prefactor
remaining identical. We notice, however, that the preceding discussion is restricted
to the case where quasiparticle propagation is ballistic in both electrodes, i.e. we
neglect the effect of impurities, additional barriers or close boundaries [158].

2.10 Related experiments

As explained in the introduction of this chapter, interest has been created, in the
context of solid state physics, over the possibility of building up a source of nonlocal
entangled electrons, which is usually called an entangler. In this sense, some very
recent experiments have dealt with the idea of extracting singlet-entangled Cooper
pairs from a superconductor with two normal metals attached to it at a certain
distance [120,129,130].

In our work in this thesis we have considered 3D ballistic semi-infinite metals.
In Sec. 2.8 we found that the current steaming from two distant tunneling contacts
from a superconductor is cut off by a decaying exponential with the superconduc-
tor coherence length and further modulated by a geometrical prefactor which decays
quickly at scales of the Fermi wave length. This problem was also encountered by
other theoretical works, although in a less pessimistic fashion due to the use of the
momentum-independent tunneling Hamiltonian [38, 39, 42, 43, 45, 48–50, 52]. In any
case, some theoretical groups realized that the spatial dependence of the geometrical
prefactor with the distance r between the two normal leads attached to the super-
conductor could be improved, i.e., made less decaying with r, if the dimensionality of
the superconductor was reduced [45,49,50] or it was considered to be in the diffusive
regime [48,52]. These results motivated the experimental search for crossed Andreev
or entangled non-local current.

In the work called “Experimental Observation of Bias-Dependent Nonlocal An-
dreev Reflection” by S. Russo, M. Krough, T.M. Klapwijk and A.F. Morpurgo in
2005 [120], the authors consider two normal electrodes (made of Al) connected via
two extended tunnel barriers to one common superconducting electrode (made of Nb),
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which is diffusive and has a coherence length of 10− 15 nm. The superconductor has
a film shape, and the separation between the two tunnel barriers is determined by the
thickness of the superconducting layer. The mechanism they use to detect CARE is
the following: through one of the tunneling contacts (J1) they inject current into the
superconductor below the gap, and the other contact (J2) is used as a voltage probe.
As holes have the opposite charge of electrons, holes undergoing nonlocal Andreev
reflection (AR) generate a voltage difference across J2 that has opposite sign to that
observed when the superconductor is in the normal state (T > T S

c ). In this kind
of setup another process competing with nonlocal AR is possible: electrons injected
from J1 can be transmitted into J2 without being converted into holes. This process
in called elastic cotanneling (EC), and it produces a voltage across J2 which has the
same sign as that observed when the superconductor is in the normal state. There-
fore, applying a voltage Vdc across the first junction J1, which generates a current into
the superconductor, and measuring the nonlocal voltage V nl across the other junction
J2 while maintaining the superconductor at ground, they can know if the underlying
process is dominated by CARE or by EC depending on the obtained sign of V nl (or
if the two processes cancel each other resulting in V nl = 0). What they observed was
that, at bias below the Thouless energy (ETh) of the superconducting layer, the sign
was the same as the sign of Vdc, indicating that EC dominates. At energies above the
ETh the sign was negative, opposite to that of Vdc, indicating the occurrence of CARE.
They also measure how, increasing the width of the superconductor and therefore the
distance between J1 and J2, both signals get strongly suppressed in absolute value.
This very nice, clean and well explained experiment confirms the possibility of using
a superconductor as an entangler. At the end of the article the authors themselves
point out that the results they find have not yet been explained theoretically. To their
believe, Coulomb interaction may play an important role in this problem. Let us add
here that R. Mélin in a recent paper [56] has tried to explain this experiment by
means of the weak localization contribution using a tight-binding description of the
metals. Although he finds a change of sign in the crossed resistance between elastic
cotunneling at low voltages and weak localization at higher voltage, the appearance
of a voltage scale related to the superconductor Thouless energy is left as an open
question.

Another experimental setup was considered in the work “Evidence of Crossed
Andreev Reflection in Superconductor-Ferromagnet Hybrid Structures” by D. Beck-
mann, H.B. Weber and H.v. Löhneysen in 2004 [129]. There the superconductor is
made of Al and has a dirty-limit coherence length of 200−300 nm. Several ferromag-
netic wires (presenting parallel or antiparallel orientation of their magnetizations) are
connected by point contacts to the aluminum bar at different distances. Considering
couples of wires, if the two contacts are spin polarized, EC and CAR are favourable for
parallel and antiparallel alignment, respectively. At low temperatures and voltages
well below the gap they measure a spin-dependent nonlocal resistance which decays
on a smaller length scale than the normal-state spin-valve signal, signalling the pres-
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ence of subgap transport. They propose a superposition of CAR and EC processes as
the origin of the observed nonlocal resistance difference at temperatures well below
T S

c . Nevertheless, Ref. [120] considers that only the sign of Vdc corresponding to EC
was indeed observed in this work.

Finally, we just mention that a high-Tc superconductor has also been used, in
particular in the 2005 work called “Signature of a crossed Andreev reflection effect
(CARE) in the magnetic response of Y Ba2Cu3O7−δ junctions with the itinerant fer-
romagnet SrRuO3”, by P. Aronov G. and Koren [130].

2.11 Conclusions

We have investigated the electron current through a NS tunneling structure in
the regime kBT ¿ eV ¿ ∆ where Andreev reflection is the dominant transmissive
channel. We have rigorously established the physical equivalence between Cooper
pair emission and Andreev reflection of an incident hole. A local tunneling Hamil-
tonian has been derived by properly truncating that of an infinite interface in order
to describe tunneling through an arbitrarily shaped interface. Such a scheme has
been applied to study transport through a circular interface of arbitrary radius and
through an interface made of two tiny holes. In the former case, the angular corre-
lations between the two emitted electrons have been elucidated and shown to be lost
as the interface radius becomes small. We have also investigated how the thermody-
namic limit is recovered, showing that, due to the destructive interference between
possible exit points, it is achieved for radii a few times the Fermi wave length. For
the case of a two-point interface, we have calculated the nonlocally entangled current
stemming from processes in which each electron leaves the superconductor through
a different orifice. We have found that, as a function of the distance between open-
ings, such an entangled current decays quickly on the scale of one Fermi wave length.
The interference between the various outgoing two-electron channels has also been
investigated and shown to yield contributions comparable to the nonlocally entan-
gled current. We have found that, in a three-dimensional problem, it is important
to employ hopping matrix elements with the right momentum dependence in order
to obtain sound physical results in questions having to do with the local tunneling
Hamiltonian (whose correct form has also been obtained from a tight-binding de-
scription), the thermodynamic limit, the preservation of unitarity, and the distance
dependence of the nonlocally entangled current through a two-point interface. An im-
portant virtue of the method here developed is that it enables the systematic study
of Cooper pair emission through arbitrary NS tunneling interfaces. Besides, it can
be used as an starting point for more sophisticated and realistic theoretical models
where the metals are in the diffusive regime or Coulomb interactions are taken into
account, as suggested by related experiments.
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Chapter 3

Divergent beams of nonlocally
entangled electrons emitted from
resonant NS structures

In this chapter we propose the use of normal and Andreev resonances in normal-
superconducting (NS) structures to generate divergent beams of nonlocally entangled
electrons. Resonant levels are tuned to selectively transmit electrons with specific val-
ues of the perpendicular energy, thus fixing the magnitude of the exit angle. When
the normal metal is a ballistic two-dimensional electron gas (2DEG), the proposed
scheme guarantees arbitrarily large spatial separation of the entangled electron beams
emitted from a finite interface. We perform a quantitative study of the linear and non-
linear transport properties of some suitable structures, taking into account the large
mismatch in effective masses and Fermi wavelengths. Numerical estimates confirm
the feasibility of the proposed beam separation method.

The contents of this chapter were published in New J. Phys. 7, 231 (2005), by E.
Prada and F. Sols.

3.1 Introduction

The goal of using entangled electron pairs for the processing of quantum infor-
mation poses a technological challenge that requires novel ideas on electron quantum
transport. As mentioned in the previous chapter, it has been proposed that a conven-
tional superconductor is a natural source of entangled electrons which may be emitted
into a normal metal through a properly designed interface [37–40,42,43,45,48–53,56] .
At low temperatures and voltages, the electric current through a NS interface is made
exclusively of electron Cooper pairs whose internal singlet correlation may survive for
some time in the context of the normal metal. The emission of two correlated elec-
trons from a superconductor into a normal metal is often described as the Andreev
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reflection [122] of an incident hole which is converted into an outgoing electron. The
equivalence between the two pictures has been rigorously proved in Refs. [51,73,159].

The need for spatial separation of the entangled beams has motivated the search
for schemes that constrain (or at least allow) the two pair electrons to be emitted
from different locations at the NS interface [38]. In the conventional picture where
quasiparticle scattering is unitary, that process is viewed as the absorption of a hole
and its subsequent reemission as an electron from a distant point. Such a crossed
Andreev reflection (CAR) has been observed experimentally [120,129,130].

The requirement of physical separation is a severe limitation in practice, since
pairing correlations decay with distance. As a consequence, the current intensity of
nonlocally entangled electrons decreases with the distance r between the two emitting
points. There is an exponential decay on the scale of the superconductor coherence
length which reflects the short-range character of the superconductor pairing corre-
lations [38, 51]. A more important limitation in practice comes from the prefactor,
which, besides oscillating on the scale of the superconductor Fermi wavelength, de-
creases algebraically with distance. In the tunneling limit, and for a ballistic 3D su-
perconductor, the decay law is r−2, if the tunneling matrix elements are assumed to be
momentum independent [38], or r−4, if proper account is taken of the low-momentum
hopping dependence [51,118]. Within the context of momentum-independent tunnel-
ing models, the power law changes if the superconductor is low (d) dimensional [45,49],
or diffusive [48,52], yielding r−d+1 and r−1, respectively. It remains to be investigated
how that behaviour changes when more realistic tunnel matrix elements are em-
ployed [51, 118] and when geometries other than planar or straight boundaries are
considered.

In this chapter we propose an experimental setup that would guarantee long term
separation of correlated electron pairs without the shortcomings caused by the need
to emit the pair electrons from distant points. The idea is to transmit both electrons
through the same spatial region but inducing them to leave in different directions. In
a ballistic normal metal such as a 2DEG, that divergent propagation guarantees the
long term separation of the entangled electrons at distances from the source much
greater than the size of the source.

To force the pair electrons to leave in different directions, we propose to exploit
the formation of resonances in a properly designed NS interface. These could be one-
electron (normal) resonances, such as those found in double-barrier structures [160]
(SININ structure), or two-electron (Andreev) resonances such as the de Gennes –
Saint-James resonances appearing in structures with one barrier located on the nor-
mal metal side at some distance from the transmissive SN interface (SNIN struc-
ture) [77, 161–164]. Those quasi-bound states have it in common that, in a perfect
interface, they select the perpendicular energy of the exiting electrons while ensuring
the conservation of the momentum parallel to the interface. At low voltages and
temperatures, this also determines the parallel energy, given that the total energy of
the current contributing electrons is constrained to lie close to the normal Fermi level.
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Altogether, this mechanism fixes the magnitude of the exit angle, since the parallel
momenta of the pair electrons are opposite to each other and both remain unchanged
during transmission through the perfect interface. Thus the electron velocities form
a V-shaped beam centred around the perpendicular axis.

The type of structures which are needed seems to be within the reach of current
experimental expertise. In the last fifteen years, several groups have built a variety
of hybrid superconductor-semiconductor (SSm) structures [77, 120, 164–170]. More
recently, some experimental groups [76,171,172] have investigated transport through
SSm structures where Sm is a 2DEG on a plane essentially perpendicular to the
superconductor boundary. In such setups, the SN interface lies at the one-dimensional
(1D) border of the two-dimensional (2D) ballistic metal. If two parallel straight-
line barriers were drawn in that structure, one along the SN interface and another
one at some distance within N, then the experimental scenario considered in this
article would be reproduced. A three-dimensional (3D) version of the same structure,
in which Sm would be 3D and the interface would be 2D, of the type reported in
Ref. [164], would also produce divergent electron beams. These, however, would be
emitted into a 3D semiconductor, where it may be more difficult to pattern suitable
detectors.

Once the two electrons propagate in the ballistic 2DEG, their motion can be
controlled by means of existing techniques. For instance, they can be made to pass
through properly located narrow apertures, such as those used in electron focusing
experiments [173]. For quantum information processing, their spin component in an
arbitrary direction could eventually be measured by using the Rashba effect [174,175]
to rotate the spin before electrons enter the spin filter [176]. Then one could attempt
to measure Bell inequalities [41, 46, 72, 73, 93, 113, 117, 177]. Alternatively, one may
measure electric current cross-correlations [36,52,79,105,178] to indirectly detect the
presence of singlet spin correlations.

In Sec. 3.2 we describe the model we have adopted for our calculations. Two im-
portant features are the offset between the conduction band minima and the difference
in the effective masses of S and Sm. Both effects have been analyzed by Mortensen
et al. [151] in the context of SIN structures, with N a 3D semiconductor. In Sec.
3.3 we focus on the linear regime and calculate the zero bias conductance using the
multimode formula derived by Beenakker [138]. There we investigate the angular dis-
tribution of the outgoing electron current and observe how it is indeed peaked around
two symmetric directions. Sec. 3.4 is devoted to the nonlinear regime [179], where
the voltage bias may be comparable to the superconductor gap. We find divergent
beams again, this time with new features caused by the difference between the elec-
tron and hole wavelengths. By plotting the differential conductance, we relate our
work to the previous literature on SN transport and note the presence of a reflection-
less tunneling zero bias peak [164, 166, 180], as well as the existence of de Gennes –
Saint-James resonances. In Sec. 3.5 we discuss how the need to have a broad perfect
interface, as required for parallel momentum conservation, can be reconciled with the
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Figure 3.1: (a) Schematic representation of the SN structure considered in this chap-
ter. S is a conventional superconductor; N is a two-dimensional electron gas. Energy
selection in the x direction by the resonance structure limits current flow to two
divergent beams of entangled electrons. (b) One-electron potential profile in the x
direction. Quasi-bound electron states form due to multiple reflection by two barriers
of strength Z1 and Z2.

interface finite size which is needed for the eventual spatial separation of the emerging
beams. Some comments on experiments that use the type of structures needed for
our proposal are made in Sec. 3.6. We conclude in Sec. 3.7.

3.2 The model

We wish to investigate the role of resonances in the angular distribution of the
normal current in suitably designed SSm interfaces. A prototypical structure is shown
in Fig. 3.1(a), where the 2DEG forms an angle with the planar boundary of a super-
conductor, similar to the setup built in Ref. [76].

In the present analytical and numerical work we consider a semi-infinite ballistic
2DEG (hereafter also referred to as N) lying in the half-plane x > 0. We assume a
perfect interface, so that the one-electron potential is independent of y. Specifically,
V (x) is taken of the form

V (x) = −V0Θ(−x) + H1δ(x) + H2δ(x− L). (3.1)

Here, V0 accounts for the large difference between the widths of the S and N con-
duction bands. If EF = ~2k2

F /2m and E ′
F = ~2k′2F /2m′ are N and S Fermi energies,

respectively, one typically has E ′
F ∼ V0 À EF À ∆, where ∆ is the zero-temperature
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superconducting gap. We assume that the bulk parameters change abruptly at x = 0.
The structure contains two delta barriers, located at the SN interface and at a distance
L from it within the N side. Their reflecting power is measured by the dimensionless
parameters Z1 and Z2, defined as Z1 = H1/~ (vF v′F )1/2 and Z2 = H2/~vF . The ef-
fective mass m, the Fermi wavevector kF , and the Fermi velocity vF are those of the
normal 2DEG, while m′, k′F , and v′F correspond to a conventional superconductor.

It was shown in Chapter 2 [51] that the picture of two-electron emission and hole
Andreev reflection are equivalent. For computational purposes, we employ here the
standard Andreev picture whereby all quasiparticles have positive energy (ε > 0),
with the quasiparticle energy origin given by µS. However, in our discussion we will
occasionally switch between the two images. An important feature is that the absence
of a hole at ε > 0 in the Andreev scenario corresponds to the presence of an electron
at −ε < 0 in the two-electron picture [51].

In a transport context, the superconductor and normal metal chemical potentials
differ by µS −µN = eV , where V is the applied bias voltage. In the Andreev picture,
one artificially takes µS as the reference chemical potential for labeling quasiparticles
and the imbalance eV is accounted for by introducing an extra population of incoming
holes with energies between 0 and eV [124,137].

An apparent shortcoming of the Andreev picture is that it does not show explicitly
that the emitted electron pairs are internally entangled. In this respect, we may
note the following remarks: (i) the two-electron hopping matrix element (2.31) of
Eq. (2.27) vanishes when the spin state of the final state (2.29) in the N side is
a triplet (instead of a singlet) [38]; (ii) an analytical study of transport through a
broad SN interface based on a two-electron tunneling picture [51] (with the final
state explicitly entangled) gives results identical to those obtained within an Andreev
description [128]; (iii) entanglement in the outgoing electron pairs has been explicitly
proven in the general tunneling case [159]; and (iv) transport across the SN structure is
spin independent and thus must preserve the internal spin correlations of the emitted
electron pair [181]. Moreover, using full counting statistics Samuelsson [182] has
shown that current through an SN double-barrier structure is carried by correlated
electron pairs.

To compute the current, we must sum over momenta parallel to the interface,
which on the N side take values −kF < ky < kF . For the purposes of solving
the one-electron scattering problem, we assume that the superconductor is also two-
dimensional. Due to the mismatch in effective masses, the perpendicular energy is not
conserved (refraction). The conserved quantum numbers are the parallel momentum
(ky = k′y) and the total energy (Ex + Ey = E ′

x + E ′
y − V0 = E, with Ex 6= E ′

x and
Ey 6= E ′

y).

For a given ky, the energy available for perpendicular motion in the normal side
is Ex = E − ~2k2

y/2m, where E is the electron total energy. As a consequence, for
each ky the picture depicted in Fig. 3.1(b) holds provided that the µN is replaced by
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an effective value [151]
µN(ky) = µN − ~2k2

y/2m, (3.2)

which is matched to µS(ky) = µS − ~2k2
y/2m

′, with µS(ky)− µN(ky) not equal to eV
but bigger1. In this case, the resonant level must lie between the effective chemical
potentials in order to have current.

Beenakker [138] has computed the SN zero bias conductance for an interface with
many transverse modes. Mortensen et al. [151] have adapted the work of Ref. [124]
to account for the full 3D motion through a perfect, 2D SSm interface, where the
effective masses and the Fermi wavelengths of N and S may differ widely. Lesovik
et al. [179] have generalized the work of Ref. [138] to the nonlinear case where eV
may be comparable to ∆. They have applied their results to structures displaying
quasiparticle resonances. Here we combine the work of these previous three refer-
ences. Specifically, we investigate the transport properties of an SN interface for
arbitrary bias V between 0 and ∆. We consider structures displaying resonances
due to multiple quasiparticle reflection, and allow for a large disparity between the
S and N bulk properties. Most importantly, we calculate the angular distribution of
the pair electron current emitted into the semiconductor. Another novel feature is
that the semiconductor we consider is a 2DEG whose plane forms an angle with the
superconductor planar boundary, so that the SN interface is formed by a straight line.

3.3 Zero bias conductance

The zero bias conductance is defined as

G(0) ≡ lim
V→0

dI/dV, (3.3)

where I is the total current at voltage bias V . For an SN interface [138],

G(0) ≡ 4e2

h

N∑
ν=1

T 2
ν

(2− Tν)
2 , (3.4)

where {Tν} are the eigenvalues of the one-electron transmission matrix through the
scattering region between the two contacts as if both metals were in the normal state.
They are evaluated at total energy E = µN ' µS ≡ µ. N is the number of transverse
channels available for propagation in the normal electrode at energy µ. For a perfect
interface, the index ν runs over the possible values of ky. Thus, when needed, we
make the replacement

∑
ν → (w/2π)

∫
dky, where w → ∞ is the interface length.

The minimum energy required for propagation in mode ν, referred to the bottom of
the conduction band, is Eν ≡ Ey = ~2k2

y/2m.

1With the notation we will introduce in the next section, where m = rk/rvm′ (see Sec. 3.3), we
have µS(ky)− µN (ky) = eV + Ey − E′

y = eV + (1− rk/rv)Ey.
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In general, we consider throughout this chapter the following values for the param-
eters of our system. The ratios between the Fermi wavevectors and Fermi velocities in
N and S are, respectively, rk ≡ kF /k′F = 0.007 and rv ≡ vF /v′F = 0.1 (GaAs values),
which imply that m = (rk/rv)m

′ = 0.07me. The semiconductor conduction band
width is taken EF = kB × 100 K ≈ 8.62 meV, which gives E ′

F = EF /(rkrv) ≈ 12.31
eV. Moreover, λF ≈ 50 nm and λ′F ≈ 0.35 nm.

In the linear regime, the total energy is restricted to be at µ. Therefore we
can write for the superconductor side: k′ = (k′x, k

′
y) = k′F (cos θ′, sin θ′), and for the

normal metal side: k = (kx, ky) = kF (cos θ, sin θ), being θ the angle between the N
wave vector k and the normal to the interface, and θ′ the angle between the S wave
vector k′ and the same normal. Since translational invariance symmetry holds along
y direction, we have ky = k′y. This implies that the angle in the superconductor
side can be expressed in terms of the angle in the normal side: sin θ′ = rk sin θ and
cos θ′ =

√
1− r2

k sin2 θ. Then, only the running value of ky determines the exit angle

θ ≡ arctan (ky/kx) , (3.5)

since kx and ky must satisfy k2
x + k2

y = k2
F . Therefore, Eq. (3.4) may be written as

G(0) =

∫ π/2

−π/2

dθ G(0, θ) , (3.6)

with G(0, θ) properly defined as the angular distribution of the zero bias conductance.

We can express G(0, θ) in terms of the transmission through the double barrier
system:

G(0, θ) = cos θ
T (θ)2

[2− T (θ)]2
, (3.7)

where

T (θ) =
T1(θ)T2(θ)

1 + R1(θ)R2(θ) + 2
√

R1(θ)R2(θ) cos[β1(θ) + φ2(θ)− 2kF L cos θ]
. (3.8)

Defining Γ(θ) ≡ cos θ/cosθ′ [151], we have for the first barrier (which connects the
superconducting metal properties with the normal metal ones)

T1(θ) =
[
1 + Zeff

1 (θ)2
]−1

(3.9)

and R1(θ) = 1− T1(θ), where

Zeff
1 (θ) ≡

√
Γ(θ)

(
Z1

cos θ

)2

+
[Γ(θ)rv − 1]2

4Γ(θ)rv

. (3.10)
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Figure 3.2: Normalized angular distribution of the zero bias conductance for several
values of the interbarrier distance L. The barrier strengths are (Z1, Z2) = (4, 2).
Upper inset: schematic representation of the perpendicular potential profile. Lower
inset: total conductance, normalized to half the maximum possible conductance, as
a function of L. See main text for the meaning of other parameters.

Furthermore, the phase of the reflection probability amplitude from the left side is

β1(θ) = arctan

{
1√
rv

Z1

cos θ
+

[1− Γ(θ)2r2
v] cos θ

4Γ(θ)2
√

r3
vZ1

}
. (3.11)

On the other hand, for the second barrier we simply have

T2(θ) =

[
1 +

(
Z2

cos θ

)2
]−1

, (3.12)

R2(θ) = 1− T2(θ) and φ2(θ) = arctan(Z2/ cos θ).
In Fig. 3.2, we show G(0, θ) for several values of the interbarrier distance L, on

a structure with potential barriers of strength Z1 = 4 and Z2 = 2 located at x = 0
and L, respectively. It is divided by 4e2w/hλF (λF being the N Fermi wavelength),
which is half the maximum possible value of G(0) (obtained when Tν = 1 for all ν or
T (θ) = 1 for all θ).

The presence of quasi-bound states located between the two barriers yields a
structure of resonance peaks in the one-electron transmission probability T (θ) as a
function of θ. We also note that the small value of rk will cause important internal
reflection of the electrons within the superconductor. As a result, only S electrons
very close to normal incidence will have a chance to be transmitted into N. Once in
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N, they may leave with much larger angles. Specifically, as we already pointed out,
one has sin θ′ = rk sin θ (Snell law). For the parameters considered in this work, only
electrons arriving from S within ∆θ′/2 = arcsin(rk) ' 0.4 degrees of normal incidence
are transmitted through the normal-state structure.

As L increases, the position of the resonant levels is lowered. In Fig. 3.2, the
values of L are chosen such that only the lowest resonant level plays a role. This
allows us to investigate the effect of a resonant level at perpendicular energy (on the
N side) Ex = ER . µ, which appears as a peak in Tν as a function of θ. This occurs
for θ = θR satisfying

µ− Ey(θR) = ER . (3.13)

For the shortest interbarrier distance displayed (L = 23 nm), the structure of
G(0, θ) begins to reveal the presence of a resonance just below EF . The trend to-
wards a bifurcation of the conductance angular distribution becomes clearer for larger
values of L. As discussed before, the presence of a sharp resonance only permits the
transmission of electrons with perpendicular energy Ex close to ER. This fixes the
value of kx at kx = kR and, with it, the magnitude of the exit angle

θR = arctan
(√

(kF /kR)2 − 1
)

. (3.14)

For a given linewidth Γ of the one-electron resonance, the corresponding spread of
the angular distribution is

∆θ ' Γ

EF sin(2θR)
, (3.15)

Thus, the angular width has a minimum at θR = π/4, as in fact revealed by the
narrower spikes in Fig. 3.2.

The lower-right inset of Fig. 3.2 shows the total conductance [see Eq. (3.6)] as a
function of the interbarrier distance. It is normalized to half its maximum possible
value. For small L, the lowest resonance lies at ER > µ, which blocks current flow. As
L is increased, ER decreases and the lowest resonance becomes available for transport
(ER < µ). Then G(0) shows a rapid increase followed by a decaying tail. The effect
is so marked that, if we attempt to plot G(0, θ) for e.g. L = 22 nm (just below the
smallest shown value), the resulting curve is invisible on the scale of Fig. 3.2. As L
increases further, a second resonance becomes available for transmission and the wide
spikes due to the the first resonance coexist with the new, more centred lobes which
in turn tend to bifurcate as L increases even more (not shown).

The decay of G(0) for L > LR (where LR is the interbarrier distance at which
ER = µ) goes like L−1/2 because it reflects the 1D nature of the transverse density of
states. This can be proved by noting that Eq. (3.4) can be written as

G(0) =
4e2

h

∑
ν

Aν , (3.16)
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Figure 3.3: Same as Fig. 3.2, for (Z1, Z2) = (2, 2).

where Aν = T 2
ν /(2− Tν)

2 is the probability for Andreev reflection in mode ν at total
energy µ, which corresponds to quasiparticle energy ε = 0. Because of the normal
resonance, both Tν and Aν are strongly peaked around the value of θR satisfying
(3.13). Thus we may approximate Aν ' aδ(µ−Eν −ER), where a is an appropriate
weight. Then G(0) becomes

G(0) ' 4e2

h
aD(µ− ER), (3.17)

where D(ε) ≡ ∑
ν δ(ε − εν) is the transverse density of states. On this energy scale,

ER is a smooth function of L, so that it can be approximated as ER ' µ− b(L−LR),
with b > 0. Then Eq. (3.17) yields G(0) ∝ D(b(L−LR)) ∼ (L−LR)−1/2, as observed
in the inset of Fig. 3.2. Such a manifestation of the transverse density of states in the
total transport properties is characteristic of structures which select the energy in the
propagation perpendicular to the plane of the heterostructure [183]. The foregoing
argument allows us to predict that, for a 3D structure, the total conductance will
display steps as a function of L, since then D(ε) will be constant (not shown).

Figs. 3.3 and 3.4 show G(0, θ) for setups identical to that of Fig. 3.2, except for
Z1 taking values 2 and 0, respectively, Z2 remaining fixed at 2. The building of SSm
interfaces with small Z1 seems feasible with the doping techniques implemented in
Refs. [164,166,169].

As in Fig. 3.2, the electron flow is channeled through well-defined resonances in
the x direction, again giving rise to divergent beams in the N electrode. At first sight
it may seem surprising that for Z1 = 0 one still finds peaks in the angular distribution,
since they reveal a structure in the transmission T (θ) that is not expected from a single
barrier of strength Z2. However, when Z1 = 0, there is still some normal reflection at
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Figure 3.4: Same as Fig. 3.2, for (Z1, Z2) = (0, 2).

x = 0 due to the large mismatches E ′
F À EF and m′ À m [see Eq.(3.10)].

In Fig. 3.3, µ stays slightly above ER for L = 23 nm. The details of reflection at
the interface cause some shift in the detailed position of the resonances. For Z1 = 0
(Fig. 3.4), the resonant level ER at that particular interbarrier distance is exactly at
µ, as revealed by the absence of splitting in G(0, θ). If, by decreasing L, ER were taken
considerably above µ, then the forward lobe of Fig. 3.4 would be sharply reduced.
This general property was already noted in the discussion of Fig. 3.2 and its inset.

3.4 Nonlinear transport: spectral conductance

We have seen so far that, in the zero bias limit, the peaks in the angular distri-
bution directly reflect the structure of (normal) resonances in T (θ) as a function of
θ (or Tν as a function of ν), since this determines G(0) through Eq. (3.4). As V
becomes nonzero and comparable to ∆, new resonances appear which are a direct
manifestation of Andreev reflection occurring at nonzero quasiparticle energies. Such
Andreev resonances have been discussed, for instance, in Refs. [162–164,179]. Below
we present a brief description that suits our present needs and which complements
the discussion given by Lesovik et al. [179].

We restrict our study to the case 0 < |eV | < ∆. We focus for simplicity on the
spectral conductance Gs(ε, V ), i.e. we don’t take into account the contribution to
the total differential conductance coming from the derivative with respect to V of
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Gs(ε, V ) itself 2. From Ref. [179], we have that 3, for 0 < |ε| < ∆,

Gs(ε, V ) =
4e2

h

∑
ν

gν(ε, V ), (3.18)

gν(ε, V ) ≡ Tν(ε)Tν(−ε)

1 + Rν(ε)Rν(−ε)− 2
√

Rν(ε)Rν(−ε) cos [ϕν(ε)− ϕν(−ε)− 2ϑ(ε)]
.

(3.19)

Here, gν(ε, V ) is the Andreev reflection probability for a quasiparticle of energy ε
incoming in mode ν, with |ε| < |eV | (by convection, the energy is measured with
respect to the chemical potential in the superconductor). It is determined by Tν(±ε),
which is defined as the one electron transmission probability of the scattering region
between the two metals as if both of them were in the normal state, Rν(±ε) =
1 − Tν(±ε), ϑ(ε) ≡ arccos(ε/∆), and ϕν(±ε), which is the phase of the reflection
amplitude for an electron (positive sign) or a hole (negative sign) impinging from the
S side on the disordered region between the metals. The last term in the denominator
describes the crucial scattering process which involves twice the propagation between
the disorder region and the NS interface, once as an electron and a second time as a
hole.

Now the wave vectors in the N and S side differ from those given in Sec. 3.3
because, for finite ε, we assume

kx(±ε) = kF cos θ

√
1 +

eV ± ε

EF cos2 θ
(3.20)

and

k′x(±ε) = k′F cos θ′
√

1± ε

E ′
F cos2 θ′

=
kF cos θ

rkΓ(θ)

√
1± ε rkrvΓ(θ)2

EF cos2 θ
. (3.21)

Note that we have included eV in the expression for kx(±ε), i.e., we implicitly assume
that the applied bias shifts the bottom of the conduction band in the left electrode by
an amount eV while keeping its bandwidth constant, as expected from electrostatic
arguments 4. We also note that the way to include the angular dependence in the

2Note that, when Gs depends on V , the differential conductance is dI
dV

∣∣
V

= Gs(eV, 0) +
2V ∂V Gs(ε, V )|ε=eV,V =0 + ... .

3We note that, in order to get these expressions for the spectral conductance in Ref. [179], the
Andreev approximation at the transparent NS interface in done, which treats the the wave numbers
kx and k′x in the phase factors of the single-particle excitations only to zeroth order. This implies
that incoming electrons are purely reflected into holes and viceversa.

4As a result, the potential profile and the scattering probabilities depend on the applied voltage,
which will yield asymmetric I-V curves as we will see later on in this section. Such a scenario differs
from that where the applied bias is assumed to introduce only an excess or defect of electron density
in one the electrodes against the background of a fixed one-electron potential. In this latter case,
no term eV would appear in Eq. (3.20) and symmetric I-V curves would be obtained.
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previous wave vectors is in accordance with Ref. [151] and the references cited therein
5.

We notice the symmetry Gs(ε, V ) = Gs(−ε, V ) and the fact that, through (3.20)
and (3.21), the transmission Tν(ε) or T (ε, θ) does depend on V . In practice, we are
only interested in the case ε = eV . Thus, hereafter we refer to both Gs and gν

as functions of a single argument ε which is to be identified with eV in the sense
indicated in Eqs. (3.18) and (3.19).

Like in Sec. 3.3, we express Eq. (3.18) in terms of the angular distribution of the
spectral conductance, Gs(ε, θ), which is defined to yield

Gs(ε) =

∫ π/2

−π/2

dθ Gs(ε, θ) =

∫ π/2

−π/2

dθ cos θ g(ε, θ), (3.22)

where g(ε, θ) is given in Eq. (3.19) with the transmissions, reflections and phases
depending on the variables ε and θ through Eqs. (3.20) and (3.21). Their specific
expressions are now more complicated than those needed in the linear regime of Sec.
3.3, so we don’t show them here.

The structure of the angular distribution of the conductance reflects that of g(ε, θ)
as a function of θ, which generally reveals a complex and rich behaviour, since it is
determined by the combined role of the product T (ε, θ)T (−ε, θ) and the cosine term
in (3.19). Below we discuss some general trends.

First we note that gν(0) = T 2
ν (0)/[2 − Tν(0)]2, with Tν(0) computed for eV = 0,

which is consistent with Eq. (3.4). Now, for |ε| < ∆, if the one-electron (normal)
resonance occurs at a perpendicular energy Ex = ER satisfying µN −EF < ER < µS,
there is always a transverse mode ky(θ) for which

µS − Ey(θ
+
R) + ε = ER, (3.23)

i.e. such that T (ε, θ) presents a peak at θ = θ+
R(ε). Correspondingly, a peak at

θ = θ−R(−ε) appears in T (−ε, θ), for which

µS − Ey(θ
−
R)− ε = ER. (3.24)

As a function of θ > 0 (the analysis is identical for θ < 0, since the current is
symmetric with respect to θ = 0), the phases ϕ(±ε, θ) undergo an abrupt change at

5Note that Mortensen et al. don’t consider a voltage difference eV in their expressions for the
wave vectors. Besides, since they use a “matching of wave functions” technique to calculate the NS
current (à la BTK [124]), the normal component to the interface of the S wave vector (what they
call k±), depends on ∆, the superconducting gap. This is not so in our case because, for us, all wave
vectors correspond to the metals in the normal state. The dependence with ∆ in our case is collected
in ϑ(ε). In particular, it is possible to get the results for the Andreev reflection probability found in
Ref. [151] through Eqs.(3.18) and (3.19), if the only dependence with ε considered is in ϑ(ε). This
correspond to make the Andreev approximation not only at the transparent NS interface, but also
at the disordered region.
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Figure 3.5: Normalized angular distribution of the spectral conductance evaluated at
ε = 0.4 meV, for several values of the interbarrier distance L. The superconductor
gap is ∆ = 1 meV. Barrier strengths are (Z1, Z2) = (4, 2). Left inset: schematic
representation of the perpendicular potential profile. Right inset: total current, inte-
grated over angles and energies (up to ∆), normalized to half its maximum possible
value, as a function of L.

θ±R(±ε), so that the cosine term goes quickly through two maxima at or near those
values of the angle 6. In the case of (Z1, Z2) = (4, 2), the maxima never approaches
one except for energies close to ∆. Nevertheless, for (Z1, Z2) = (0, 2) the maxima in
general reach the unity. As we will comment later, this is related to the difference
between normal and Andreev resonances. Moreover, for (Z1, Z2) = (4, 2), the maxima
of Gs(ε, θ) follow in general the maxima of T (ε, θ) and T (−ε, θ) as a function of θ.
However, for (Z1, Z2) = (0, 2), the maxima of Gs(ε, θ) follow in general the maxima
of the cosine term cos[ϕ(ε, θ) − ϕ(−ε, θ) − 2ϑ(ε)]. In both cases this translates into
pairs of close lying peaks in the conductance angular distribution.

Figs. 3.5-3.7 show the value of Gs(ε, θ) normalized to 4e2w/hλF for structures with
(Z1, Z2) = (4, 2) and (0, 2), the former being considered for two different combination
of ε and ∆. As L increases, the value of ER decreases and sinks below µS. This
generates maxima in the angular distribution in the manner discussed above.

At zero temperature, and for eV > 0, Gs(ε) can be understood as the contribution

6This is always the case for (Z1, Z2) = (4, 2) (except for vanishing ε where the cosine is equal
to −1∀ θ), but in the case of (Z1, Z2) = (0, 2) and small (nonvanishing) energies ε compared to ∆,
the cosine only presents one peak, whereas for ε → ∆, the inner peak spreads forming a plateau for
angles between zero and θ−R approximately.
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Figure 3.6: Same as Fig. 3.5, for ∆ = 0.1 meV and ε = 0.099 meV.

Figure 3.7: Same as Fig. 3.5, for (Z1, Z2) = (0, 2) and ε = 0.45 meV.
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to the total current stemming from electron pairs emitted into the normal metal with
total energies µS±ε. The two electrons leaving the superconductor have identical |kx|
(which is selected by the resonance) and slightly different total energy (see below).
Thus they do not point exactly in the same direction, i.e. the V which they form upon
emission is not exactly centred around the normal axis. By symmetry, for each pair
in which e.g. the upper electron is emitted towards the right (and the lower one to
the left), there is another pair solution in which the upper electron travels to the left
(and the lower one to the right). When plotting the total differential conductance,
the two asymmetric Vs appear as a single V whose lobes are double peaked.

We note here that, in the contribution to Gs(ε) as defined in Eqs. (3.18) and
(3.19) [or in Eq. (3.22)], Tν(−ε) is identical to the Tν appearing in the zero voltage
limit discussed in the previous section [see kx(−ε) in Eq. (3.20), where eV − ε = 0
when ε = eV ], i.e. θ−R(−ε) = θR as defined in (3.13) if we identify µN ≡ µ. This
implies that, in the double-peaked lobes, the inner peak points in the same direction
as the single-peaked lobe of the linear (V = 0) limit, a result which is independent of
the sign of eV . Besides we have that Ex(±ε, V ) = EF cos2 θ + eV ± ε, which we can
consider a function of a single argument since we are considering that ε = eV . At the
resonance we have Ex(ε) = Ex(−ε) = ER, therefore kx[ε, θ

+
R(ε)] = kx[−ε, θ−R(ε)], while

Ey[θ
+
R(ε)] = Ey[θ

−
R(ε)] + 2eV . Thus, at a given ε, peaks in the angular distribution

occur near θ+
R and θ−R . Both have the same perpendicular momentum, but the latter

has lower parallel kinetic energy.

The fact observed in Figs. 3.5-3.7 that the inner peak displays a larger current
density is due to the asymmetric character of the peaks in T (±ε, θ) as a function of
θ, which ultimately reflects the greater efficiency with which close-to-normal emission
electrons contribute to the electric current.

The insets of Figs. 3.5-3.7 show the total current (integrated over θ and ε) as a
function of L. It is given by the expression

IA =

∫ ∞

0

dε
1

e
[f(ε− eV )− f(ε + eV )] Gs(ε, V ). (3.25)

In this case, V in Eq. (3.19) is fixed to the value of ∆ and ε is integrated over the en-
ergy window left by the difference of Fermi distribution functions at zero temperature.
As for the zero bias conductance, the total current reveals a succession of maxima
followed by an inverse square root decay law that mirrors the transverse density of
states (see discussion in the previous section).

Fig. 3.8 shows the total spectral conductance for voltages below the gap. This type
of curves has been the object of preferential attention in the previous literature on NS
transport. By presenting them here, we make connection with that preexisting body
of knowledge, in particular with the experimental and theoretical works of Refs. [164]
and [179], respectively. The forthcoming remarks are intended to complement that
discussion and to provide a self-contained, unified picture of the work presented here.
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Figure 3.8: Subgap spectral conductance (integrated over angles), normalized to half
its maximum possible value, for four values of the interbarrier distance L, two values
of the superconductor gap ∆, and two values of the strength Z1 of the barrier located
right at the SN interface.
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The asymmetry observed in Gs(eV ) as a function of eV is due to the general
characteristic that Gs(ε, V ) 6= Gs(−ε,−V ) which, in our case, comes from the fact
that (3.20) depends on V in such a way that kx(ε, V ) 6= kx(ε,−V ). 7 When we inte-
grate over angles to get the spectral conductance Gs(eV ) of Eq. (3.22) [or (3.18)], for
V > 0 our integration interval is θ ∈ [−π/2, π/2]. However, for V < 0, the interval
is θ ∈ [− arccos(

√
2|eV |/EF ), arccos(

√
2|eV |/EF )], which comes from the fact that,

in Eq. (3.20), θ must be such that EF cos2 θ− eV − ε ≥ 0. 8 This ultimately reflects
the finiteness of the normal bandwidth, since the greater is EF , the smaller is the
contribution to the conductance of angles between arccos(

√
2|eV |/EF ) and π/2 and,

therefore, the smaller is the asymmetry. Asymmetric curves are displayed in Ref. [76]
and have been pointed out in Ref. [179] (see also references therein). Let us add
here that if we had consider that the applied bias does not change the bottom of the
conduction band, then no term eV would appear in Eq. (3.20) and symmetric I-V
curves would be obtained. The important message is that, in systems with relative
small bandwidths, and especially for low perpendicular energies, transport properties
are sensitive to the details of the voltage drop. A realistic, model-independent calcu-
lation would have to include, self-consistently, the electrostatic effect that the local
rearrangement of electron density has on the effective one-electron potential. In what
follows, we focus on the behaviour for eV > 0.

Both in Figs. 3.8(a) and (b) we present two groups of curves, corresponding to a
small and a large gap. The barrier parameters of Fig. 3.8(a) are the same as those
of Figs. 3.5 and 3.6 , namely, (Z1, Z2) = (4, 2). Although Figs. 3.5 and 3.6 already
exhibit Andreev features such as the double-peaked lobes in Gs(ε, θ), these are washed
out when the angular variable is integrated to yield the total spectral conductance
Gs(ε = eV ), as shown by the single peaked curves obtained for the same value of the
gap as in Fig. 3.5 (∆ = 1 meV), or by the absence of peaks for the parameters of Fig.
3.6 (∆ = 0.1 meV). The curves for ∆ = 1 meV display a clear zero bias conductance
peak (ZBCP) whose height is determined by the structure of the normal properties
[see Eq. (3.4)]. As ε increases above zero, both electron and hole (or both the upper
and lower energy emitted electrons) may benefit from the low-lying normal resonance
(ER < µS) as long as ε < Γ, where Γ is the linewidth of the normal resonance. When

7In order to have symmetry in the current-voltage characteristics under reversal of voltage,
i.e. G(ε, V ) = G(−ε,−V ), it is necessary that G(ε, V ) be independent of voltage. In that case
Gs(ε) |ε=eV = dI/dV |V and the differential conductance in invariant under sign reversal of the
voltage.

8Of course we know that for Eqs. (3.19) and (3.18) to hold it is necessary that the Andreev
approximation at the transparent NS interface can be made. Therefore, the condition Ex À ε, ∆
must be satisfied [in order to simplify the BdG equations by linearizing the dispersion relations
around kx(0) and k′x(0)]. This implies that, in principle, we are not sure how correctly we are treating
grazing angles on the interface or, in other words, that the approximation becomes inaccurate for
angles in the vicinity of θ ∼ π/2. Nevertheless, according to Ref. [151], numerical estimates suggest
that the approximation is reasonable even for semiconductors, which have much lower Fermi energies
as compared to those of normal metals.
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ε > Γ, it is not possible to channel both electrons through the same resonance and
the contribution to the conductances decreases. On closer inspection, one finds that
the width of the ZBCP is indeed determined by the normal resonance width, but not
by that appearing in the perpendicular transmission Tν(ε) (viewed as a function of
ε). Rather, it essentially mirrors the width of the numerator in Eq. (3.19). This
is the product Tν(ε)Tν(−ε) evaluated at θR(ε = 0) and viewed also as a function of
ε, i.e., for electrons leaving in the direction of maximum current flow (at exit angle
θ = θR). 9

A general property of SN interfaces with a single barrier right at the interface is
that Andreev reflection probability tends to unity as |ε| → ∆ [124]. However, we find
that this is generally not the case for a double barrier interface. For Z1 = 4 (and also
for Z1 = 0), we do notice that sharp peaks in Gs(ε) form just below the gap for some
values of L, so close to it that they can be observed only through a magnification
of Fig. 3.8. Due to this tendency to acquire large values near the gap, Gs(ε) goes
through a minimum at finite ε if the width of the ZBCP is smaller than the gap. This
is the case shown in Fig. 3.8(a) for ∆ = 1 meV. For a smaller gap (∆ = 0.1 meV),
the value of Gs(0) remains unchanged but there is no room for Gs(ε) to display a
minimum between 0 and ∆.

Being Z1 = 0 more transmissive (although not entirely because of the reflection
at the potential step; see Sec. 3.3), Fig. 3.8(b) displays Andreev resonance features
that do survive upon integration over angles. For ∆ = 1 meV and L = 23 nm, one
observes a peak at finite energies that adds to the overall ZBCP. (We will call these
kind of peaks FBCP, finite bias conductance peak) 10. As L increases, the inner
Andreev peak evolves towards zero energy. At larger distances (L = 36 nm), the
lowest Andreev resonance can only be hinted at as a shoulder in the plot for ∆ = 0.1
meV. We also note that, for L = 24 and 26 nm, a second Andreev resonance becomes
visible close to the gap edge. However, due to the involved interplay between the
transmission probabilities and the cosine term appearing in Eq. (3.19), this second
peak does not appear to follow a simple monotonic trend.

The formation of FBCP can be qualitatively understood in the following way.
Andreev resonances are characteristically given by the condition [179]

cos [ϕ(ε, θ)− ϕ(−ε, θ)− 2ϑ(ε)] = 1 , (3.26)

because when this condition is satisfied for a given ε and a given θ, the denominator
in Eq. (3.19) is minimum so that g(ε, θ) is maximum. As we noticed before, for
(Z1, Z2) = (4, 2), Eq. (3.26) only happens for ε → ∆. Nevertheless, when Z1 = 0

9According to Ref. [179], the width of the ZBCP is of the order of the Thouless energy, which can
be defined for ballistic systems with appropriate boundary conditions [184]. The boundary condition
in our case is the double barrier.

10We want to make the observation that, if the Andreev approximation was made not only at the
NS transparent interface but also at the disordered region, no such structure as ZBCP or FBCP
could develop in Gs as a function of ε.
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there is always a certain region of values of ε (whose width is the width of the FBCP)
for which the cosine of Eq. (3.19) is one or remains close to one for a certain window
of values of θ ≥ 0, and for a symmetric window with respect to θ = 0 for θ ≤ 0.
Integration over these θ windows translates into a big contribution to Gs(ε). In the
case of the first FBCP (the one with smaller ε = eV for each L), those ”plateaus”
in the behaviour of the cosine as a function of θ occur around ±θR [see Eq. (3.13)].
Besides, they are wider for values of L for which the resonance is at ER . µS (where
the current is carried by electrons moving perpendicular to the interface), and get
reduced as L increases. This is why peaks are bigger for values of L = 23 nm
and 24 nm than for L = 26 nm or 36 nm. The formation of the second FBCP
comes from the transformation of the previous ”plateaus” into depressions and the
appearance of another ”plateau” between the previous ones for θ values around zero.
This mechanism usually occurs for a small region of values of ε close to the gap energy.

3.5 Discussion

So far we have assumed that the SN interface is infinitely long (w →∞). This has
allowed us to treat ky as a continuous, conserved quantum number, which consider-
ably simplifies the transport calculation. Of course, the idea of an infinite interface is
at odds with the primary motivation of our work, which is to propose a method to spa-
tially separate mutually entangled electron beams. Below we argue that, fortunately,
only a moderately long interface is needed in practice.

For simplicity, we focus our discussion on the low voltage limit, where the total
energy can be assumed to be sharply defined. Then the width ∆θ of the angular
distribution is due only to the uncertainty in the parallel momentum ∆ky. This
in turn is closely connected to ∆kx through the relation kx∆kx = ky∆ky, since total
energy uncertainty is zero. There are two contributions to the momentum uncertainty:
the nonzero width of the resonance in the perpendicular transmission and the finite
length of the SN interface. Thus we may estimate

∆ky ' mΓ

~2ky

+
1

w
. (3.27)

This translates into an angular width

∆θ ' Γ

EF sin(2θR)
+

1

kF w cos θR

. (3.28)

The actual angular width of Gs(0, θ) is actually a bit smaller, since the present esti-
mate is based on one-electron considerations, while the relevant angular distribution is
determined by Eq. (3.4). We neglect this difference for the present simple estimates.

Eq. (3.28) contains two contributions. The first term is determined by the normal
resonance and is responsible for the width of the angular distributions plotted in Figs.
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3.2-3.4 (with w → ∞). Our main concern here is that the second contribution, that
which stems from the finiteness of the aperture, does not contribute significantly.

A strict criterion may be that the interface finite length should not modify the
intrinsic angular width (~vF sin θR/w ¿ Γ), which everywhere has been assumed to
be small enough to allow for narrow divergent beams. A more lenient criterion is
that, regardless of the specific value of Γ, the finite aperture should not generate an
excessively broad angular distribution. For typical cases this amounts to requiring
kF w À 1 (for a discussion see Fig. 5 in Ref. [51]). For the bandwidth which we have
assumed (EF /kB = 100 K) and an effective mass of m = (rk/rv)m

′ = 0.07me, where
me is the bare electron mass, we have λF = 2π/kF ∼ 50 nm. So apertures greater
than a few hundred nanometres seem desirable to keep the angular uncertainty within
acceptable bounds.

Another source of angular spreading is interface roughness, with a characteristic
length scale l. However, it should not pose a fundamental problem as long as l À λF ,
so that a structure of intermediate width could be designed satisfying l À w À λF .

For the difference in velocity direction to translate into spatial separation, it is nec-
essary that the spin detectors are placed sufficiently away from the electron-emitting
SN interface. Of course, the needed distance depends also on the exit angle θR. For a
convenient value of θR ∼ π/4, simple geometrical considerations suggest that, unsur-
prisingly, the distance d from the detector to the centre of the SN interface must be
greater than its width w. Since elastic mean free paths in a 2DEG can be made as
high as le ∼100 µm, there seems to be potentially ample room for building structures
satisfying λF ¿ w ¿ d ¿ le. Such devices would display well-defined divergent
current lobes which could be detected (and, eventually, manipulated) at separate
locations before the directional focusing is significantly reduced by elastic scattering.

3.6 Related experiments

To the best of our knowledge, there are no experiments that implement the kind
of system we have proposed and analyzed theoretically here. Nevertheless, there
already exist in the literature quite similar experimental devices to the one we consider
[76, 77, 164, 172, 185] and that, with little changes, could serve to test our proposal.
Here we talk briefly about a couple of those experiments.

In the work called “Shot-noise and conductance measurements of transparent
superconductor/two-dimensional electron gas junctions” by B. -R. Choi et al. in
2005 [76], a 3D superconducting injector made of Nb is put in contact with a 2DEG
formed between layers of InGaAs and InAlAs. The superconductor forms an angle
of 30 deg to the 2D plane of the high-mobility electron gas. The Fermi wavelength
of electrons in the N side is λF = 18nm (which corresponds to a T 2DEG

F = 770K),
and the superconducting gap is ∆ = 1.14meV . Since the motivation of the authors is
to use such a structure to pattern a three terminal beam-splitter geometry onto the
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2DEG and measure shot noise and cross-correlators, they engineer a highly transpar-
ent S-N interface. In our proposal, we would rather need a tunneling interface there.
It is remarkable that, after creating a long 1D superconductor-2DEG interface and
by means of e-beam lithography, they reduce it to submicron dimensions (containing
20 conducting channels approximately). In this way, the top-view of their device is
very similar to our Fig. 3.1(a), except for the lack of the two tunneling barriers. We
also note here that the plot they present of voltage dependent differential resistance
[dV/dI(V)] is clearly asymmetrical with respect to zero voltage, although for volt-
ages bigger than the superconducting gap. Other experimental works that obtain
asymmetric current-voltage characteristics can be found in Refs. [186,187].

Double barrier structures are considered in the work “Resonant transport in Nb/
GaAs/AlGaAs heterostructures: Realization of the de Gennes-Saint-James model” by
F. Giazotto et al. in 2001 [77], and in the later extended paper “Coherent transport in
Nb/delta-doped-GaAs hybrid microstructures” by F. Giazotto, P. Pingue and F. Bel-
tram in 2003 [164]. The authors report experimental observation of de Gennes–Saint-
James-type resonances in a microstructure consisting of a Nb/GaAs/AlGaAs/GaAs
hybrid heterojunction. This corresponds to a SNIN structure where the N’s are
semiconductors. The thickness of the GaAs epylayer sandwiched between the super-
conductor and the insulator was selected in order to have a single quasibond state
below the superconducting gap. There is no 2DEG here and the interfaces between
metal and semiconductors are two dimensional, which is different from our setup,
but the philosophy of the resonant structure they implement is similar to ours, and
consequently they measure zero-bias and finite-bias conductance peaks vs voltage.
Moreover, the values of the parameters they have (for barrier heights, distance be-
tween interfaces, effective mass, etc.) are also very similar to ours.

3.7 Conclusions

We have investigated theoretically the possibility of creating resonant NS struc-
tures where the two electrons previously forming a Cooper pair in the superconductor
are sent into different directions within the normal metal. The central idea relies on
the design of a structure that is transparent only to electrons with perpendicular
energy within a narrow range of a resonant level. Since the total energy lies close to
the Fermi level, such a filtering of the electron perpendicular energy translates into
exit angle selection.

Electrons from a conventional superconductor are known to be correlated in such
a way that electrons moving at similar speeds in opposite directions tend to have
opposite spin. At low temperatures and voltages, electron flow from the supercon-
ductor to the normal metal is entirely due the transmission of correlated electron
pairs. These have both opposite spin and opposite parallel (to the interface) momen-
tum, while possessing the same total energy. If the exit angle is selected by filtering
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the perpendicular momentum, the current in the normal metal is formed by two nar-
row, mutually singlet entangled electron beams which point in different directions and
which spatially separate from each other at distances from the source much greater
than the width of the source.

The trick of exit angle selection is intended to facilitate a neat observation of
nonlocal entanglement between electron beams, and this work has been devoted to
proposing a specific implementation of that idea. One cannot help noting, however,
that such a selection of the outgoing direction might not be totally essential. If
we content ourselves with measuring anticorrelated low-energy spin fluctuations over
mesoscopic length scales, it may just be sufficient to place the two spin detectors
symmetrically around the interface at a sufficient distance and angle, very much like
in the setup of Fig. 3.1(a) but with a conventional, non angle-selecting SN tunnel
interface. If their motion between the emitter and the detector is ballistic, electrons
arriving at each detector have, on average, opposite parallel momentum and opposite
spin (angular anticorrelation has been explicitly shown in Ref. [51] for a broad perfect
interface). The boundaries of the 2DEG might conceivably be designed to optimize
such correlations. The outcome is that electrons arriving at each detector will exhibit
a degree of nonlocal spin-singlet correlations that could be measured.

Altogether, we conclude that a ballistic two-dimensional electron gas provides
an ideal scenario to probe nonlocal entanglement between electrons emitted from a
distant, finite-size interface with a superconductor. If that interface is formed by
a resonant structure that selects the perpendicular energy and thus the magnitude
of the electron exit angle, nonlocal spin correlations will be clearly observed if the
outgoing beams are directed towards suitably placed detectors.
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Chapter 4

Clauser-Horne inequality and
decoherence in mesoscopic
conductors

In this chapter we analyze the effect of decoherence on the violation of the Clauser-
Horne (CH or CH74) inequality for the full electron counting statistics in a mesoscopic
multiterminal conductor. Our setup consists of an entangler that emits a flux of
entangled electrons into two conductors characterized by a scattering matrix and
subject to decoherence. Loss of phase memory is modeled phenomenologically by
introducing fictitious extra leads. The outgoing electrons are detected using spin-
sensitive electron counters. Given a certain average number of incoming entangled
electrons, the CH inequality is evaluated as a function of the numbers of detected
particles and of the various quantities characterizing the scattering matrix. When
decoherence is turned on, we show that the amount of violation of the CH inequality
is effectively reduced. Interestingly we find that, by adjusting the parameters of
the system, there exists a protected region of Q values for which violation holds for
arbitrary strong decoherence.

The contents of this chapter were published in Phys. Rev. B 72, 125333 (2005),
by E. Prada, F. Taddei and R. Fazio; and in New J. Phys. 7, 183 (2005), by F.
Taddei, L. Faoro, E. Prada and R. Fazio.

4.1 Introduction

Entanglement [14] is probably the most important resource for the implementation
of quantum computation and quantum communication protocols [188]. Since recently,
most of the work on entanglement has been carried out in optical systems using
photons [189], cavity QED systems [190], and ion traps [191]. Solid state systems,
however, are a very attracting arena of research in quantum information [32, 33,192]
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because, in perspective of future applications, they should allow for scalability and
integration. In this light, a number of different realizations of entangled electrons
have since been proposed: hybrid normal-superconducting structures [38, 41, 46, 50,
51, 53, 73, 79], superconductor-carbon nanotubes systems [45, 47, 49], quantum dots
in the Coulomb blockade regime [33, 59, 61], chaotic quantum dots [62], Kondo-like
impurities [58], quantum Hall bar systems [72, 74, 111, 193, 194], Coulomb scattering
in 2D electron gas [195].

Besides its generation, a crucial issue is that of the detection of entanglement.
By means of a beam-splitter, entanglement can be detected in transport through an
analysis of current noise [105] or higher cumulants [108]. Furthermore, the presence
of entanglement can be revealed by analyzing the Bell inequality and quantities like
concurrence [109], which have been expressed in terms of zero-frequency charge and
spin-current noise [41, 46, 72, 73, 110–112]. Violation of a Bell inequality implies that
there exist quantum correlations between the detected particles that cannot be de-
scribed by any local hidden variables theory. In the same spirit as it was done for the
noise, in Ref. [113] a Clauser-Horne(CH) inequality [115,116] was derived for the Full
Counting Statistics (FCS) of electrons and its properties were discussed 1. In partic-
ular, it was found that the maximum violation of the CH inequality for electrons in
the Bell state simply scales as the inverse of the number of injected particles. It was
also found that the CH inequality is violated for a superconducting hybrid structure
and, more interestingly, for a three terminal fully normal device.

In real systems electrons are unavoidably coupled to the electromagnetic envi-
ronment. As a result dephasing or decoherence takes place, thereby reducing and
eventually destroying entanglement. Understanding their consequences is an impor-
tant issue. In Refs. [73,74,78,79] the effect of dephasing was mimicked by introducing
in the density matrix of the electronic entangled states a phenomenological parame-
ter which suppresses its off-diagonal elements. By properly choosing the transmission
probability of beam-splitters or tunnel barriers, violation of Bell inequality was found
even for “strong” dephasing. In Refs. [72,80] dephasing was introduced averaging over
an uniform distribution of random phase factors accumulated in each edge channel
of the quantum Hall bar. If the two edge channels are mixed by the tunnel barrier,
no violation was reported for “strong” dephasing. The effect of decoherence and
relaxation has also been analyzed using a Bloch equation formalism in Ref. [107].

In the present work we analyze the CH inequality for the FCS [113] in the presence
of decoherence. We consider the prototype setup depicted in Fig. 4.1, consisting of a
generic entangler connected to two conducting wires. Entangled electrons injected in
the two leads are detected by performing spin-selective counting along a given local
quantization axis. The entangled electrons are subject to decoherence while travers-

1Recently in the literature there have been proposals to measure the FCS [J. Tobiska, and Yu.
V. Nazarov, Phys. Rev. Lett. 93, 106801 (2004); J. P. Pekola, Phys. Rev. Lett. 93, 206601 (2004)]
and a first experiment has been performed (only in the tunneling limit at present [J. Bylander, T.
Duty, and P. Delsing, Nature 434, 361 (2005)]).
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ing the conductors (thus before reaching the detectors) 2. Various phenomenological
methods have been developed to treat decoherence in transport through mesoscopic
conductors. In Refs. [81, 82], which actually describe exactly nonequilibrium radia-
tion acting on the system, dephasing is induced by a classical fluctuating potential.
In Ref. [83], dephasing is treated as random fluctuations of the phase of propagat-
ing modes through the conductor. Both methods have been recently applied to FCS
in Refs. [84, 85]. In this chapter decoherence is introduced as due to the presence
of additional fictitious reservoirs along both wires. This method, which mimics the
effect of inelastic processes, was introduced by Büttiker [86, 87] in terms of fictitious
extra leads. The advantage of this model resides in the fact that inelastic, phase
randomization processes are implemented within an elastic, time-independent scat-
tering problem. In the rest of the paper we shall refer to decoherence as to the effect
produced by such fictitious additional leads.

As expected, we find that decoherence suppresses the violation of the CH inequal-
ity, though leaving unchanged the range of angles for which violation occurs. In
particular, the value of the maximum violation is suppressed more rapidly as com-
pared with the absence of decoherence (exponentially with the square root of the
number of injected electrons instead of algebraically). Importantly, by studying the
CH inequality as a function of the number of transmitted electrons, there exist values
of such quantity that are more protected against decoherence.

The paper is organized as follows: In Sec. 4.2 we described in detail the mesoscopic
system we are considering to test the violation of the CH inequality together with
the phenomenological model of decoherence. Sec. 4.3 is devoted to the formulation
of the CH inequality for the FCS within the scattering approach and to the analysis
of the no-enhancement assumption (Sec. 4.3.1). The results are presented in Sec.
4.4, where a systematic analysis of the violation of the CH inequality against all the
parameters of the device is addressed. A concluding summary is provided in Sec. 4.6.

For completeness, we include in Sec. 4.4.1 the results relative to an asymmetric
setup, whereby decoherence occurs only in one of the two wires. In Appendix C.1 and
C we collect, respectively, the expressions of the expectation values and the different
probability distributions.

4.2 Description of the system

We consider the setup illustrated in Fig. 4.1. It consists of an entangler, two
conducting wires and two spin-selective counters. The entangler, on the left-hand-
side, is a device that produces pairs of electrons, with energy E < µL, in a maximally
spin entangled state (Bell state). On the right-hand-side of Fig. 4.1 the electron
counting is performed in leads 1 and 2 (at equal electrochemical potential µR) for

2Note that we make use of the CH inequality as a tool to detect the persistence of entanglement in
the presence of decoherence processes, given an injected entangled state (whose existence is assumed).
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Figure 4.1: Idealized setup for testing the CH inequality for electrons in a solid-state
environment in the presence of decoherence. It consists of three parts: An entangler
that produces pairs of spin-entangled electrons exiting from terminals 3 and 4. Two
conductors that connect these terminals with exiting leads 1 and 2, and two analyzers.
The conductors are described by the elastic scattering matrices SLu, SRu, SLl and SRl,
and the inelastic ones SPu and SPl. These last ones can simulate phenomenologically
the presence of decoherence through the coupling via two leads (5, 6 and 7, 8) to two
additional reservoirs of chemical potentials µ and µ′. Electron counting is performed
in leads 1 and 2. Finally, θ1 and θ2 are the angles at which the spin-quantization axis
are oriented.

electrons with spin aligned along the local spin-quantization axis at angles θ1 and θ2

(spin-selective counters). As a convention we say that the analyzer is not present when
the electron counting is spin-insensitive (electrons are counted irrespective of their
spin direction). Since we assume no back-scattering from counters to the entangler,
the particles which are not counted are lost and hence there is no communication
between the two detectors. Leads 3 and 4 of the entangler are connected to exit leads
1 and 2 through two conductors, where inelastic processes are introduced through the
fictitious lead model of Büttiker [196]. Let us analyze in detail the upper wire (see
Fig. 4.1) which connects the emitting lead 3 with the exiting lead 1. The conductor
consists of three scattering regions. The elastic scatterer connecting lead 3 to 3’ is
described by the matrix

ŜLu =

(
ř ť′

ť ř′

)
=




r↑ 0 t′↑ 0
0 r↓ 0 t′↓
t↑ 0 r′↑ 0
0 t↓ 0 r′↓


 . (4.1)

[The index L (R) stands for Left (Right) elastic scatterer, while P stands for Probe
scatterer; u (l) refers to the upper (lower) wire.] Here rσ (tσ) is the probability
amplitude for an incoming particle with spin σ from lead 3 to be reflected (transmitted
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into lead 3’). For a normal single-channel wire we set tσ = t′σ =
√

T0, and rσ = r′σ =
i
√

1− T0, where T0 is the transmission probability. Inelastic scattering is introduced
by plugging in an additional reservoir of chemical potential µ with an energy- and
spin-independent scattering matrix

S̄Pu =




0̌
√

1− α 1̌
√

α 1̌ 0̌√
1− α 1̌ 0̌ 0̌

√
α 1̌√

α 1̌ 0̌ 0̌ −√1− α 1̌
0̌

√
α 1̌ −√1− α 1̌ 0̌


 , (4.2)

represented by a triangle in Fig. 4.1. For the sake of clarity, we have denoted by
a check (̌ ), a caret (̂ ) and an overbar (̄ ), respectively, (2×2), (4×4) and (8×8)
matrices. In Eq. (D.1) 1̌ and 0̌ are, respectively, unit and zero (2×2)-matrices in
the spin space, and (1 − α) is the probability for transmitting a particle between
leads 3’ and 1’. The coupling parameter ranges from α = 0, when no particles are
transmitted into leads 5 and 6 from leads 3’ and 1’, to α = 1, when no particles are
transferred between leads 3’ and 1’. A third elastic scatterer, described by a matrix
ŜRu, connects lead 1’ to lead 1. The conductor is therefore described by the matrix
Ŝ13 defined as Ŝ13 = ŜRu⊗ S̄Pu⊗ ŜLu, where the notation ⊗ stands for the scattering
matrix composition (elimination of internal current amplitudes) [197]. For simplicity,
we shall assume that ŜRu = ŜLu.

Due to the presence of the additional reservoir, particles propagating through lead
3 are transmitted partially to lead 1 and partially to leads 5 and 6 (see Fig. 4.1). The
additional reservoir, however, can transfer itself particles to lead 1 and 3. As a result,
only a fraction of the particles arriving in lead 1 comes from coherently transmitted
ones sent in from lead 3, with probability

T13 =
T 2

0 (1− α)

[1 + (1− T0)(1− α)]2
. (4.3)

Another fraction, the incoherent contribution, comes from the additional reservoir
through leads 5 and 6, with probability

T15 + T16 =
T0α

1 + (1− T0)(1− α)
. (4.4)

The presence of the extra reservoir mimics the fact that the current flowing through
the conductor is partially composed of particles (the incoherent fraction) which have
lost phase memory while traversing it. For α = 0 all particles are coherently trans-
mitted and T15 + T16 = 0, while for α = 1 all particles are transferred incoherently
and T13 = 0. For α = 0, the overall transmission probability through the conductors
is given by T = T 2

0 /(2 − T0)
2. In the rest of the paper we will refer to α as to the

decoherence rate.
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The chemical potential µ of the additional reservoir is set in such a way that no
net current flows in or out of the reservoir (I5 + I6 = 0). This constraint is enforced
only on average. An instantaneous current in or out the additional reservoir is then
allowed [86–88, 95], and a non-fluctuating chemical potential µ is assumed (for this
reason the additional terminal does not behave as a voltage probe).

A similar description applies to the lower wire connecting lead 4 with lead 2, so
that the scattering matrix of the conductor is defined as Ŝ24 = ŜRl⊗ S̄Pl⊗ ŜLl, where,
for simplicity, we set ŜRl = ŜLl. If the angles θ1 and θ2 of the analyzers are parallel
to each other and in the absence of spin mixing processes, the total matrix of the
system can be written as

S̄ =

(
Ŝ13 0̂

0̂ Ŝ24

)
. (4.5)

The general scattering matrix relative to non-collinear angles S̄θ1,θ2 is obtained from
S̄ by rotating the spin quantization axis independently in the two conductors (note
that this is possible because the two wires are decoupled) [198]: S̄θ1,θ2 = Ū S̄Ū †, where
Ū is the rotation matrix given by

Ū =




1̌ 0̌ 0̌ 0̌
0̌ Ǔθ1 0̌ 0̌
0̌ 0̌ 1̌ 0̌
0̌ 0̌ 0̌ Ǔθ2


 , (4.6)

and

Ǔθ =

(
cos θ

2
sin θ

2

− sin θ
2

cos θ
2

)
. (4.7)

For simplicity, we further assume that the two conductors are equal and that they
are subjected to the same degree of decoherence, so that Ŝ13 = Ŝ24. For this reason
the chemical potentials of the additional reservoirs are identical. It is interesting to
notice that decoherence processes in the two wires are, in some sense, ”uncorrelated”,
meaning that we have imposed that the currents flowing through the fictitious leads
vanish separately in the two reservoirs. (Correlations can be introduced, for example,
by imposing I5 + I6 + I7 + I8 = 0.) In the symmetrical setup we are considering here,
µ = µR + (µL − µR)/2. In the rest of the paper we consider the case in which all the
reservoirs are at zero temperature.

The incoming state of the system |ψ〉 depends on whether the energy of electrons
falls within the range µR < E < µ or µ < E < µL:

|ψ〉 =

{ |ψB〉 µ < E < µL

|ψS〉 µR < E < µ
, (4.8)

where

|ψB〉 =
1√
2

[
a†3↑(E)a†4↓(E)± a†3↓(E)a†4↑(E)

]
|0〉 , (4.9)
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and

|ψS〉 =
1√
2

[
a†3↑(E)a†4↓(E)± a†3↓(E)a†4↑(E)

] ∏
n=5,6,7,8

a†n↑(E)a†n↓(E) |0〉 . (4.10)

In Eqs. (4.9) and (4.10) a†iσ(E) is the creation operator for a propagating electron
in lead i with spin σ at energy E. The upper sign refers to the case in which the
incoming state is a spin triplet and the lower sign to the spin singlet. Electrons with
energy between µ and µL are exiting leads 3 and 4 of the entangler in a superposition
of spin ↑ and ↓ states. For energies between µR and µ electrons are also injected from
the additional leads (with indexes 5, 6, 7 and 8) in a factorized state. Note that this
occurs only in the presence of decoherence, i.e. for α 6= 0.

By setting µR = 0 and µL = eV , the total current flowing in lead 1, calculated
using the Landauer-Büttiker formalism [152] in the linear response regime, is given
by

I1 = e2V/h(T13 + T15 + T16). (4.11)

Although the coherent part of the current decreases with α, the total current increases
with it (except for T = 1, where it remains constant and equal to e2V/h). We would
like to mention that this is a special feature of the model of decoherence we are using,
not to be expected in general.

4.3 CH inequality for the full counting statistics

The quantity employed in the formulation of the CH inequality, as derived in
Ref. [113], is the joint probability P (Q1, Q2) for transferring a number of Q1 and Q2

electronic charges into leads 1 and 2 over an observation time t. The CH inequality is
based on the hypothesis that the outcome of a measurement could be accounted for by
a local hidden variable theory. The test of the CH inequality proceeds as follows. The
entangler is switched on during an observation time t (where the minimum t is the
inverse of the measuring device bandwidth) in which it emits an average number M
of pairs of entangled electrons. After traversing the conductors (and being affected
by inelastic scattering) the electrons are counted in both terminals 1 and 2. The
experiment is then repeated to get single terminal and joint terminal probability
distributions that Q1 particles arrive into analyzer 1 and Q2 particles arrive into
analyzer 2 (along a local spin-quantization axis or independently of it) with Q1+Q2 ≤
2M .

The CH inequality for the FCS reads [113]

SCH = P θ1,θ2(Q1, Q2)− P θ1,θ′2(Q1, Q2) + P θ′1,θ2(Q1, Q2) + P θ′1,θ′2(Q1, Q2)

− P θ′1,−(Q1, Q2)− P−,θ2(Q1, Q2) ≤ 0. (4.12)



84 Chapter 4: Clauser-Horne inequality and decoherence in mesoscopic conductors

The possible violation, or the extent of it, also depends on Q1 and Q2. P θ1,θ2(Q1, Q2) is
the joint probability in the presence of two analyzers, where Q1 electrons are counted
in lead 1 along θ1 direction and Q2 are counted in lead 2 along θ2. P θ1,−(Q1, Q2) is
the corresponding joint probability when one of the two analyzers has been removed.
The same notation will be used for single terminal probability distributions: P θi(Qi)
in the presence of an analyzer and P (Qi) if no analyzer is present. Eq. (4.12) holds
for all values of Q1 and Q2 which satisfy the no-enhancement assumption:

P θi(Qi) ≤ P (Qi). (4.13)

The joint probability distribution for transferring Q1σ electrons with spin σ in
lead 1, Q2σ electrons with spin σ in lead 2 and so on is given by

P (Q1↑, Q1↓, Q2↑, . . .) =
1

(2π)2n

∫ +π

−π

dλ1↑dλ1↓dλ2↑ . . . χ( ~λ↑, ~λ↓) ei ~λ↑· ~Q↑ ei ~λ↓· ~Q↓ , (4.14)

where χ( ~λ↑, ~λ↓) is its characteristic function that can be expressed within the scat-
tering approach.

For long measurement times t, the total characteristic function χ is the product
of contributions from different energies, so that

χ( ~λ↑, ~λ↓) = e
t
h

R
dE log χE( ~λ↑, ~λ↓). (4.15)

The energy-resolved characteristic function for the transfer of particles at a given
energy E in a structure attached to n leads can be written as [199–201]

χE( ~λ↑, ~λ↓) = 〈
∏

j=1,n

eiλj↑N̂
j↑
I eλj↓N̂

j↓
I

∏
j=1,n

e−iλj↑N̂
j↑
O e−iλj↓N̂

j↓
O 〉 , (4.16)

where the brackets 〈...〉 stand for the quantum statistical average over the thermal
distributions in the leads. Assuming a single channel per lead, N̂ jσ

O(I) is the number

operator for outgoing (incoming) particles with spin σ in lead j and ~λ↑, ~λ↓ are vectors
of n real numbers, one for each open channel. In terms of outgoing (incoming) creation
operator φ̂†jσ (â†jσ), which are linked by the total scattering matrix of the system S,
the number operators can be expressed as

N̂ jσ
I = â†jσâjσ; N̂ jσ

O = φ̂†jσφ̂jσ. (4.17)

At zero temperature, the statistical average over the Fermi distribution function
in Eq. (4.16) simplifies to the expectation value calculated over the state |ψ〉 defined
in Eq. (4.8). The interval of integration in Eq. (4.15) can be separated in two energy
ranges, namely E < µ and µ < E < eV . Since, in the limit of a small voltage bias
V , χE is energy-independent, Eq. (4.15) can be approximated to

χ( ~λ↑, ~λ↓) '
[
χS

0(
~λ↑, ~λ↓)

]Mµ
[
χB

0 ( ~λ↑, ~λ↓)
]M−Mµ

, (4.18)
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where Mµ = µt/h and M = eV t/h.
According to Eq. (4.14), both single terminal and joint probability distributions

require the computation of multidimensional integrals, which can only be performed
numerically. In Appendix C it is shown that the various probability distributions
needed to evaluate the CH inequality can be expressed in a differential form, more
suitable for numerical evaluation. All the expectation values needed for the calcula-
tions are collected in Appendix C.1. Since the two wires are decoupled and there are
no spin-flip processes, the joint probabilities with a single analyzer are factorized:

P θ1,−(Q1, Q2) = P θ1(Q1)P (Q2),

P−,θ2(Q1, Q2) = P (Q1)P
θ2(Q2). (4.19)

Rotational invariance makes P θ1,−(Q1, Q2) and P−,θ2(Q1, Q2) independent of the
angle of the analyzers, while P θ1,θ2(Q1, Q2) depends on the angles only through the
combination θ1±θ2

2
(upper sign for triplet and lower sign for singlet), so that we can

define P
θ1±θ2

2
1,2 (Q1, Q2) ≡ P θ1,θ2(Q1, Q2) and P1,−(Q1, Q2) ≡ P θ1,−(Q1, Q2). As a result,

the CH inequality depends only on three angles θa ≡ θ1 ± θ2, θb ≡ θ2 ± θ′1 and
θc ≡ θ′1±θ′2 (θd = θ1±θ′2 is a linear combination of the other three: θd = θa +θb +θc).
Since P θ1,θ2(Q1, Q2) is an even function of θ1±θ2

2
, in order to find maximal violations

we can restrict the evaluation of the CH inequality to the following set of angles:
θa = θb = θc = θd/3 ≡ 2Θ. (This is found by imposing that positive contributions
to SCH are maximum while negative contributions are minimum.) The quantity SCH,
characterizing the CH inequality, will therefore depend on a single angle Θ, on the
decoherence strength α and on the value of the transmitted charge Q1 and Q2. As a
result, the CH inequality takes the simplified form

SCH = 3PΘ
1,2(Q1, Q2)− P 3Θ

1,2 (Q1, Q2)− P1,−(Q1, Q2)− P−,2(Q1, Q2) ≤ 0. (4.20)

Without loss of generality we can choose σ = σ′ =↑. The other cases can be recovered
by rotating the polarizers an angle π.

4.3.1 No-enhancement assumption

As mentioned above, the CH inequality can be derived under the no-enhancement
assumption, Eq. (4.13). Such a condition is trivially true when a single particle is
transmitted, Q = 1: The presence of an analyzer can only decrease the counting
probability [115]. However, when many particles are transmitted, Q > 1, the no-
enhancement assumption is a relationship between distribution probabilities that is
not, in general, satisfied for all values of Q.

We remind that in the absence of decoherence [113], for given M and Q, the no-
enhancement assumption in one of the two leads is satisfied only within a range of
values of T below certain threshold Tmax(M, Q). In the case of different numbers of
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Figure 4.2: a) Maximum value of the transmission, Tmax, allowed by the no-
enhancement assumption as a function of decoherence rate α for M = 20 emitted
pairs and for the different values of Q. b) Minimum allowed number of transmitted
particles Qmin for a fixed wire transmission as a function of the decoherence rate.

transmitted particles in lead 1 and 2 (Q1 6= Q2), the maximum allowed transmission
probability must be taken to be the minimum between Tmax(M,Q1) and Tmax(M, Q2),
according to our assumption of identical wires.

The no-enhancement assumption is affected by decoherence as a consequence of
the fact that single terminal probabilities, with or without analyzer, depend on α.
More precisely, the no-enhancement assumption in one of the two leads is satisfied for
transmissions up to a threshold value which is now a function of α: Tmax(α, M, Q).
Unlike the ideal case, for α 6= 0 it is not possible to find an analytical expression for
Tmax. In Fig. 4.2a Tmax is plotted as a function of α for M = 20 and all values of
Q from 1 to 20. One can see that Tmax monotonically decreases with α for values
of Q . M/2 and monotonically increases for large values of Q. For intermediate
values of Q, Tmax decreases up to values of α close to one and then rapidly increases
reaching one when α = 1. This behaviour is specific of the fictitious lead model and
reflects the fact that both the average total current [Eq. (4.11)], related to P (Q), and
the average spin-polarized current, related to P θ(Q), are increasing functions of α.
Indeed, as a consequence of a finite α, the two distributions shift to larger values of Q,
as it would happen for an enhanced effective transmission probability. Its maximum
allowed value by the no-enhancement assumption is therefore reached for a smaller
T . As a consequence Tmax must decrease with α. This argument is not valid when
Tmax ' 1 at α = 0, since the average currents do not change appreciably with α and
only the peculiar shape of the distributions matters. We define

Tmax(α,M, Q1, Q2) = Min[Tmax(α,M, Q1), Tmax(α, M,Q2)]. (4.21)

Alternatively, given a wire with a fixed transmission T , the no-enhancement as-
sumption is verified for values of Q bigger than or equal to a certain value Qmin(α,M, T ).
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For α 6= 0, the behaviour of Qmin is shown in Fig. 4.2b for M = 20 and for differ-
ent transmissions. We observe that it increases (step-wise, since only integer values
of the number of particles are permitted) as a function of the decoherence rate for
almost every transmission T , except for those close to unity, for which it decreases.
The behaviour for small values of T can still be understood in terms of the average
current increase with α. For T = 1, being Qmin = M at α = 0, decoherence can only
cause a decrease.

4.4 Results

In the present section we shall discuss how the CH inequality of Eq. (4.20) is
affected by the presence of decoherence. There are some general characteristics of the
behaviour of SCH that were already found in the absence of decoherence [113] that
hold also for finite α 3. The most relevant are the following:

• SCH is always symmetric as a function of Θ around Θ = π/2;

• for given M , Q1 and Q2 the maximum violation always occurs for transmission
equal to Tmax(α,M, Q1, Q2).

In Fig. 4.3, SCH is plotted as a function of the angle Θ for M = 20 and Q1 = Q2 =
8. The three curves refer, respectively, to α = 0 (solid line), α = 0.3 (dashed line) and
α = 0.5 (dotted line), each one calculated for the corresponding T = Tmax reported
in the label box. The plot shows that the CH inequality is violated within a certain
window of values of Θ. The violation is suppressed with increasing decoherence rate,
but occurs for the same range of angles. This is due to the following properties of
the joint probabilities, which hold at T = Tmax for all values of α: i) P

π/4
1,2 (Q1, Q2) =

P
3π/4
1,2 (Q1, Q2) = P1,−(Q1, Q2), as a consequence SCH(Θ = π/4, 3π/4) = 0; and ii)

PΘ
1,2(Q1, Q2) ≥ P 3Θ

1,2 (Q1, Q2), P1,−(Q1, Q2), P−,2(Q1, Q2) for π/4 ≤ Θ ≤ 3π/4. We
checked that by reducing T from Tmax, but keeping α constant, both the window of
angles where violation is present and its amount are decreased. Note that between
Θ = 0 and π/2, there is always an angle for which SCH is maximum, we shall denote
it by Θbest(α, M, Q1, Q2). For given α, M , Q1 and Q2, the maximum violation occurs
at Tmax and Θbest.

We now analyze the maximum violation of the CH inequality for a given M with
T = Tmax and Θ = Θbest as a function of Q1, Q2 and α. In Fig. 4.4 we show four
density plots of SCH in the (Q1, Q2) plane for different values of decoherence rate
and M = 20. In the gray scale white corresponds to SCH = 0 and black to its

3In particular, if the entangler is substituted with a source that emits factorized states, the CH
inequality is never violated for any decoherence rate. This is simply due to the fact that two terminal
joint probability distributions are given by the product of single terminal probability distributions,
thus making the CH inequality always equal to zero.



88 Chapter 4: Clauser-Horne inequality and decoherence in mesoscopic conductors

Figure 4.3: The quantity SCH is plotted as a function of Θ for M = 20, Q1 = Q2 = 8
and different decoherence rates at the corresponding maximum allowed transmissions.
In particular, for α = 0 (solid line) Tmax = 0.54, for α = 0.3 (dashed line) Tmax = 0.43
and for α = 0.5 (dotted line) Tmax = 0.35. The amount of violation of the CH
inequality decreases with α, whereas the range of angles for which violation occurs
does not change. We call Θbest the angle corresponding to the maximum violation.

Figure 4.4: Density plots of the maximum value of SCH, evaluated at T =
Tmax(α, Q1, Q2) and Θ = Θbest(α, Q1, Q2), in the (Q1, Q2) plane for M = 20 rela-
tive to four different values of decoherence (α = 0, 0.2, 0.4, 0.6). SCH ' 0.012 is the
maximum violation for M = 20 found in the absence of decoherence.
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Figure 4.5: Maximum value of the quantity SCH (T = Tmax and Θ = Θbest) as a
function of Q for M = 20 and different values of decoherence: α = 0, 0.3, 0.5, 0.8.
The largest violation always occurs in the absence of decoherence and, for a given Q,
violation is reduced monotonically with α. The position where the maximum occurs,
Qbest, slightly increases with α. At Q = Qbest, Tmax = 0.54 for α = 0, Tmax = 0.59 for
α = 0.3, Tmax = 0.52 for α = 0.5 and Tmax = 0.39 for α = 0.8.

maximum value taken in the absence of decoherence. When α = 0, the CH inequality
is strongly violated for diagonal terms of the distribution (where Q1 = Q2). However,
some weaker violations are also possible for Q1 6= Q2, though they tend to disappear
with increasing α. By increasing the values of α the plots show that the maximum
violation of the CH inequality decreases rapidly: for α = 0.6 we get only 16% of the
largest value reached at α = 0. The behaviour of the CH inequality is symmetrical
with respect to the exchange of Q1 with Q2 for any rate of decoherence. In Fig. 4.5
we report the section of the plots in Fig. 4.4 along the diagonal of the (Q1, Q2)-
plane. The four curves are relative to α = 0, 0.3, 0.5 and 0.8 and M = 20. Several
observations are in order. If we denote with Qbest the position of the maximum of a
curve, for all values of decoherence rate Qbest ∼ M/2, more precisely, Qbest = 8 for
α = 0 and Qbest = 10 for all other curves. This slight increase of Qbest with α is due
to the fact that an increase in decoherence is accompanied by a slight enhancement
of the average current [Eq. (4.11)] flowing through the wires (as mentioned at the end
of Sec. 4.2). This is, however, a specific feature of the model of decoherence we are
considering. Note furthermore that, as decoherence gets stronger, the range of values
of Q for which violation takes place shrinks.

We now discuss the violation of the CH inequality as a function of α and M at T =
Tmax, Θ = Θbest and Q = Qbest. In Fig. 4.6 the ratio s ≡ SCH(α, M)/SCH(0,M) at
Tmax, Θbest and Qbest (i. e. the quantity SCH normalized to its value in the absence of
decoherence) is reported in a three-dimensional plot as a function of α and the number
of emitted pairs M . The most interesting feature is that such a ratio decays more
rapidly with α as M is increased. This means that decoherence is more disruptive,
as far as detection of entanglement is concerned, for long measuring times (i.e. large
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Figure 4.6: SCH, normalized to its value in the absence of decoherence and calculated
at T = Tmax, Θ = Θbest and Q = Qbest, is plotted as a function of decoherence rate α
and number of injected entangled pairs M . Longer measuring times (i.e. larger values
of M) make decoherence more effective, that is, make the detection of entanglement
more difficult.

M). As an example, for M = 1000 the extent of the violation is reduced by 80% at
α = 0.1. More precisely, for values of M larger than 30, we find that the normalized
SCH follows the law:

s ∼ sinh[K(1− α)b
√

M ]

sinh(K)
, (4.22)

with K = 7.26 and b = 0.076.
Another interesting aspect is related to Qbest which, as mentioned above, only

slightly increases with α for all values of M . As M is increased, the value of Qbest,
for a given α, does not increase proportionally to M , but very much slowly and
surprisingly remains of the order of 10 for M = 1000 (see Fig. 4.7). For α = 0 this
can be understood as follows. On the one hand, one expects Qbest, corresponding
to the largest SCH, to be about the position of the maximum of joint probability
distributions, which can be assumed to be equal to the product MT . On the other
hand, Tmax is a decreasing function of M , in fact it decays as 1/M [113]. The product
MTmax is therefore expected to be a constant. Indeed, it is possible to show, in the
large M expansion, that Qbest ∼ MTmax for α = 0 and Qbest ∼ M

√
Tmax for α 6= 0,

while Tmax ∼ 1/M for α = 0 and Tmax ∼ 1/M2 for α 6= 0. As a result, Qbest is roughly
constant as a function of M and α 4.

The final point we address is the maximum decoherence rate, that we denote by
αmax, for which there is still violation of the CH inequality as a function of Q ≡ Q1 =
Q2. In Fig. 4.8 we plot αmax as a function of Q for M = 20 at T = Tmax and Θ = Θbest.

4More precisely, for large M , Qbest is implicitly given by the equation: Qbest =
Q̃[α, Tmax(α,M,Qbest)], where Q̃[α, T ] = M [

√
Tα(2 − α) + T (2 − 2α + α2)]/[2 + (

√
T − 1)α]2 is

the position of the maximum of the distribution in the large M approximation.
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Figure 4.7: Qbest is plotted as a function of M for different values of decoherence rate
(α = 0, 0.2, 0.5 and 0.8). In the inset, curves are shown over an extended range,
up to M = 1000. For a given α, with increasing M the value of Qbest increases very
slowly remaining of the order of 10.

Figure 4.8: Maximum value (αmax) of the decoherence parameter for which there is
still violation of the CH inequality as a function of Q for M = 20. The line with ¨
represents αmax(Q) with Sth = 0: from Q = 1 to Q = 14 violation is found for any
decoherence rate. The line with F is instead computed using a threshold Sth which
corresponds to 0.25% of the maximum violation value for α = 0, and the line with
¥ using Sth corresponding to 1%. The latter threshold is used in the inset where
αmax(Q) is plotted for M = 10, 20, 30 and 40. Interestingly we found that there is a
value Q̄ that is more robust against decoherence. In particular, Q̄ = 6 for M = 10,
Q̄ = 11 for M = 20, Q̄ = 13 for M = 30 and Q̄ = 14 for M = 40. With increasing
M , αmax diminishes slowly.
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The line with the symbol ¨ shows that violation of the CH inequality is found for
any rate of decoherence for Q = 1 to Q = 14 and thereafter αmax decreases sharply.
Nevertheless, the extent of violation for α close to 1 is almost negligible for most of
1 ≤ Q ≤ 14. One can therefore introduce a small positive threshold Sth which defines
the violation as: SCH < Sth. The line with F refers to a threshold of 0.25% of the
maximum value of SCH at α = 0 (Sth = 3× 10−5 for M = 20), and the line with ¥ to
a 1% (Sth = 1.2× 10−4 for M = 20). The latter percentage is used for the thresholds
of the plots in the inset of Fig. 4.8, where αmax is plotted for M = 10, 20, 30 and 40.
It is shown that there are values of Q that are more resistent to decoherence, i. e. for
which violation survives for larger decoherence rates. In the caption of Fig. 4.8, the
most protected value against decoherence is denoted with Q̄ ≡ Qbest(αmax) .

4.4.1 Asymmetric setup: one additional reservoir

It is interesting to consider the case in which decoherence affects the two wires
differently. In this appendix we study the case when decoherence affects only one of
the two conductors, i.e. in the presence of a single additional fictitious reservoir, for
example, in the upper branch, as depicted in Fig. 4.9a. Being T0 the transmission of
the elastic scatterers in the upper conductor, we choose the transmission of the lower
conductor to be equal to T = T 2

0 /(2 − T0)
2, in order for the two conductors to have

the same conductance in the absence of decoherence. Fig. 4.9b shows the density
plot of the maximum value of SCH (with T = Tmax and Θ = Θbest) as a function
of Q1 and Q2, for M = 20, α = 0.4 (left) and α = 0.6 (right). In the presence of
decoherence the maximum violation is not achieved on the diagonal (Q1 = Q2), i.e.
the behaviour of SCH is not symmetrical anymore with respect to Q1 and Q2. This is
due to the fact that, as we have seen above, the overall current increases with α so that
it is more likely to transmit a larger number of particles in the conductor subjected
to decoherence. Another difference with respect to the case with two additional
reservoirs is that the suppression of the violation by α is less pronounced.

The asymmetry found in the behaviour of the density plots of Fig. 4.9(b) must
not be confused with the asymmetry we would obtain in a setup without decoherence
but with conductors of different resistance [system sketched in Fig. 4.10(a)]. In this
case, by applying separately the no enhancement assumption to the two conductors,
large violations occur in a vast region of the (Q1, Q2)-plane, as shown in Fig. 4.10(b).
Interestingly, we note that one would get large violations of the CH inequality for
Q1 6= Q2. However, this asymmetry would not come from the fact that entanglement
is weakened by decoherence in only one wire.
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Figure 4.9: a) Idealized setup with a single additional reservoir in the upper branch
of the system. Scattering matrices are chosen so that, in the absence of decoherence,
the two conductors have equal transmission. b) Density plot of the maximum value
of SCH in the (Q1, Q2)-plane for M = 20 and for α = 0.4 (left) and α = 0.6 (right).
As decoherence increases, the maximum violation is not achieved on the diagonal,
but is shifted towards the right-bottom part of the plane (Q1 > Q2). This occurs
because only the current flowing through the conductor affected by decoherence is
modified. Furthermore, the suppression of the violation by α is less pronounced
with respect to the case with two additional reservoirs. For example, for α = 0
we find Max[SCH] = 0.012 achieved at (Q1 = 8, Q2 = 8). For α = 0.2 and one
additional reservoir we have Max[SCH] = 0.0089 reached at (8, 7), whereas for two
additional reservoirs we get Max[SCH] = 0.0074 at (9, 9). For α = 0.4 and one
additional reservoir, Max[SCH] = 0.0066 at (9, 7), and with two additional reservoirs,
Max[SCH] = 0.0042 at (10, 10). Finally, for α = 0.6 and one additional reservoir,
Max[SCH] = 0.0046 at (10, 7), and with two additional reservoirs, Max[SCH] = 0.0020
at (10, 10).
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Figure 4.10: a) Idealized setup with no decoherence but differently transmitting upper
and lower conductors. b) The density plot of the maximum value of the quantity SCH

is shown in the (Q1, Q2)-plane for M = 20.

4.5 Related experiments

Bell inequalities have been tested experimentally many times over the last thirty
years using photons. Although some experimental assumptions have been made,
the results are considered reasonably conclusive, and thus, are in general thought to
have confirmed quantum theory and shown results that cannot be explained under
local hidden variable theories. Some of these well known experiments are: the one
by Freedman and Clauser in 1972 [202] (where they violate Freedman’s inequality,
a variant on the CH74 inequality); the ones by Aspect and his team at Orsay in
1981 [203] and 1982 [204,205] (where they used calcium cascade sources, and violated
the CH74 and the CHSH inequalities); the one by Tittel and his group in Geneva
in 1998 [206] (where they showed that distance did not destroy the “entanglement”,
since light was sent in fibre optic cables over distances of several kilometres before it
was analyzed); and the one by Weihs [207] and his team at Innsbruck in 1998, lead by
Zeilinger (where they improved Aspect’s of 1982 and violated the CHSH inequality
by over 30 standard deviations) [208].

As far as we know, Bell test experiments have not been carried out with elec-
trons, neither when they are formulated in terms of zero-frequency current crossed
correlators, nor when expressed in terms of the FCS, where “coincidence counts” are
needed.

So much for the Bell inequalities, but even the measurement of the FCS for elec-
trons is only a recent achievement. Theoretical proposals to measure the FCS were
suggested in 2004 in Refs. [209, 210], where the use of threshold detectors based on
Josephson junctions were proposed. Then, in 2005, an experiment called “Current
measurement by real-time counting of single electrons” was performed by J. Bylander,
T. Duty and P. Delsing [121]. In this work the authors managed to count electrons
one by one, although only in the tunneling limit, by means of a microelectronic cir-
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cuit with a chain of islands connected by small tunnel junctions. Later in 2005, a
preprint by S. Gustavsson et al. has appeared in the cond-mat archive called “Count-
ing statistics of single-electron transport in a quantum dot” [211]. Here the authors
claim to have measured the FCS of current fluctuations in a semiconductor quantum
dot by real-time detection of single electron tunneling using a nearby quantum point
contact.

4.6 Conclusions

In this chapter we have studied the effect of decoherence on the violation of the
CH (or CH74) inequality formulated in terms of the FCS [113]. The system under
investigation (Fig. 4.1) consists of an idealized entangler connected, through a pair
of identical mesoscopic wires, to spin-selective counters. We have assumed that deco-
herence, which occurs equally but independently in the two conductors, is produced
by the presence of additional fictitious reservoirs according to the phenomenological
model of Büttiker [86,87]. Decoherence is parameterized by the rate α.

As expected, decoherence gives rise to suppression of the violation of the CH
inequality. The extent of such a suppression has been analyzed as a function of the
parameters which characterize the system, namely, the transmission T of the wires,
the angle between analyzers Θ, the number of injected entangled pairs M and the
number of transmitted particles Q1 and Q2 in the counters. First we have discussed
the no-enhancement assumption, a condition that needs to be satisfied in both leads
1 and 2 in order for the CH inequality to hold. We have found that such condition,
in a given lead, is verified for all transmission T up to some maximum value Tmax

which depends on Q, M and, of course, α. In particular, Tmax decreases with the
decoherence rate up to some value of Q and thereafter increases. The main results
can be summarized as follows:

• Maximal violation, even in the presence of decoherence, occurs at the largest
allowed transmission T = Tmax and for Q1 = Q2 (it disappears very rapidly
when Q1 6= Q2).

• As long as T = Tmax, the angle range of the analyzers for which violation takes
place does not depend on the decoherence rate, though the extent of violation
decreases with α.

• In the absence of decoherence, the maximum violation of the CH inequality was
proved to decay as 1/M [113]. Here we have found that, for finite α, the param-

eter SCH decreases exponentially with
√

M , more precisely as [f(α)]−
√

M/M ,
i.e. decays both with increasing M and α.

• The value of Q for which maximum violation occurs is virtually independent of
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M , which means that the largest violations appear for relatively small numbers
of transmitted particles, even at large observation times.

• Interestingly, we have found that the largest decoherence rate for which the CH
inequality is violated (within a given small tolerance) presents a maximum as
a function of Q. This means that there exist numbers of transmitted charges
which are more protected against decoherence, i.e. the influence of the environ-
ment is less disruptive as far as the violation of CH inequality is concerned.

Although in this work decoherence is assumed to be produced by the presence of
additional reservoirs, other different sources of decoherence are possible in mesoscopic
systems. We believe that this model captures the main effects of decoherence, as far
as violations of the CH inequality in a mesoscopic system is concerned, and that the
results found in this work may be useful to design the best experimental conditions.

Since real systems cannot be perfectly shielded from the environment, the issues
analyzed in this work seem adequate not only from a fundamental point of view,
but also in what it might contribute to the understanding of the properties of lossy
quantum channels. For the future it would be interesting to apply our method to
realistic systems, like normal or superconducting beam splitters.



Chapter 5

Effect of inelastic scattering on
spin entanglement detection
through current noise

In this chapter we study the effect of inelastic scattering on the spin entangle-
ment detection and discrimination scheme proposed by Egues, Burkard and Loss
[Phys. Rev. Lett. 89, 176401 (2002)]. The finite-backscattering beam splitter ge-
ometry is supplemented by a phenomenological model for inelastic scattering, the
charge-conserving voltage probe model, conveniently generalized to deal with entan-
gled states. We find that the behaviour of shot-noise measurements in one of the
outgoing leads remains an efficient way to characterize the nature of the non-local
spin correlations in the incoming currents for an inelastic scattering probability up
to 50%. Higher order cumulants are analyzed, and are found to contain no addi-
tional useful information on the spin correlations. The technique we have developed
is applicable to a wide range of systems with voltage probes and entanglement.

The contents of this chapter can be found in the preprint archive cond-mat/0601365,
by P. San-Jose and E. Prada.

5.1 Introduction

Electron spin has various crucial properties that make it an ideal candidate for a
robust carrier of quantum entanglement in solid state systems. Its typical relaxation
and dephasing times can be much larger than any other electronic timescale [212,213],
in particular in semiconductor heterostructures, where its controlled manipulation
begins to be a reality [7]. This makes electron spin very valuable not only in the
context of spintronics [214], but also in the path to a scalable realization of a potential
quantum computer.

Moreover, the possibility of demonstrating non-local quantum entanglement of
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massive particles such as electrons is of conceptual relevance in itself, since it is at
the core of the quantum world weirdness. Quantum optics are far ahead in this
respect, and present technology can already entangle [215], teleport [20] or otherwise
manipulate quantum mechanically [190] the polarization state of photons, and even
commercial solutions have been developed [216] for completely secure cryptographic
key exchange via optical quantum communication.

In the context of solid state the equivalent feats are far away still, due to the addi-
tional difficulties imposed mainly by the fact that massive particles such as electrons
suffer from interactions with their environment, which can be in general avoided in
the case of photons. This in turn leads to strong decoherence effects, which degrades
the entanglement transportation. Sometimes these disruptive effects can be mini-
mized in the case of electron spin with the proper techniques [7]. Still, the problem of
controlled spin manipulation and spin detection are two great hurdles to be tackled
in the long path to spin-based quantum computation [33]. The main difficulty in the
manipulation problem is that all the operations available in usual electronics address
electron charge, being completely independent of the electron’s spin, unless some ad-
ditional mechanism involving, e.g., external magnetic fields [214, 217], ferromagnetic
materials [218], or spin-orbit coupling [219, 220] are relevant. Such mechanisms usu-
ally correlate spin states to charge states, which allows to manipulate and detect the
charge states via more conventional means.

Several recent theoretical works have specifically studied the influence of an elec-
tromagnetic environment [75,78,80] and the decoherence through inelastic processes
[93, 117] on orbital and spin-entangled states, such as those that are the subject of
the present work. Generally, in all of those cases some type of spin filter was neces-
sary to measure Bell inequalities, which makes their experimental realization rather
challenging.

Another interesting possibility to manipulate and detect spin states with elec-
trostatic voltages is through Pauli blocking, which appears as a spin-dependent ‘re-
pulsion’ between two electrons due to Pauli exclusion principle, as long as the two
electrons share all the remaining quantum numbers. This peculiarity is therefore spe-
cific of fermions, and has no analog in quantum optics. An example of the potential
of such approach was illustrated in Ref. [105]. It relied on the use of the mentioned
Pauli blocking mechanism in a perfect four-arm beam splitter supplemented by the
bunching (antibunching) behaviour expected for symmetric (antisymmetric) spatial
two-electron wavefunctions. This was done through the analysis of current noise [105],
cross-correlators [79], and FCS [108]. It was also shown that it is possible to dis-
tinguish between different incoming entangled states [79, 106]. In Ref. [106] it was
demonstrated how the shot noise of (charge) current obtained in one of the outgoing
leads was enough to measure the precise entangled state coming in through the two
input arms, and to distinguish it from a classical statistical mixture of spin states.
Finite backscattering and arbitrary mixtures in the spin sector were also considered
in Ref. [107], with a focus on the entanglement content and its detection. Two chan-
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nel leads and microscopic description of the spin-orbit interaction were also recently
analyzed [221].

In this work we will analyze the robustness of the entanglement detection scheme
proposed in Ref. [106] in the presence of spin-conserving inelastic scattering and finite
beam-splitter backscattering for various entangled current states. Although the spin
sector is not modified by scattering, inelastic scattering changes at least the energy
quantum number of the scattered electrons, and since Pauli exclusion principle does
no longer apply to electrons with different energy, we should expect such inelastic
processes to degrade the performance of the detection scheme. From a complementary
point of view, viewing the entangled electron pairs as wavepackets localized in space,
it is clear that inelastic scattering will cause delays between them that will in general
make them arrive at the detectors at different times, thereby lifting the Pauli blocking
imposed by their spin correlations 1. Moreover, as noted in Ref. [107], the presence of
backscattering introduces spurious shot noise that is unrelated to the entanglement
of the source. Assuming known backscattering but, in general, unknown inelastic
scattering rate, we show that the scheme remains valid in certain range of parameter
space, and point to a modified data analysis to extract the maximum information
out of local shot noise measurements. We further study the information that may be
extracted from higher order cumulants of current fluctuations.

We will work within the scattering matrix formalism, and to describe inelastic
scattering we will employ a modification of the fictitious voltage probe phenomeno-
logical model [86,87,95] generalized to include instantaneous current conservation [88]
in the presence of entangled states. This approach relies on phenomenological argu-
ments and defines a scattering probability α that is used to parameterize inelastic
effects. Elastic scattering has also been formulated within this language [89]. The
validity of the model has been widely discussed, in general finding good qualitative
agreement with microscopic models [96–99] and experiments [101]. Recently it was
demonstrated to become equivalent to microscopic phase averaging techniques at the
FCS level in some limits and setups [102] (clarifying some apparent discrepancies with
classical arguments [82]). Also recently, it has been applied to study the effect of spin
relaxation and decoherence in elastic transport in chaotic quantum dots [103, 104].
The scheme remains attractive as a first approximation to inelastic (or elastic) pro-
cesses. Alternatively, it is a good model for a real infinite-impedance voltage probe, a
common component of many mesoscopic devices. The generalization we present here
is specifically targeted towards the computation of the FCS of mesoscopic systems
with inelastic scattering and incoming scattering states with arbitrary entanglement
properties. The problem of how to apply such decoherence model to the particularly
interesting case of non-locally entangled input currents has not been previously dis-
cussed to the best of our knowledge, except in Ref. [93] (presented here in Ch. 4,

1Note that this argument also applies to elastic scattering as long as no energy filters are present
before the scatterer. Otherwise, mere elastic delay effects will be irrelevant [79], and only inelastic
scattering will break Pauli blocking.
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Figure 5.1: The beam splitter geometry fed with pairwise non-locally entangled elec-
tron currents or polarized currents. The action of the spin rotation via Rashba spin-
orbit coupling in one of the input leads changes noise in the output leads dramatically.
Inelastic transport is modeled between the entangler and the spin rotation region by
means of one or more fictitious probes. Shot noise measured in terminal R1 as a
function of θ can be used to detect the nature of the incoming electron correlations.

where current conservation was not taken fully into account.

This chapter is organized as follows. In Sec. 5.2 we discuss the beam-splitter
device as an entanglement detector in the presence of inelastic scattering. In Sec.
5.3 we give a short account of the technique we will employ to compute the FCS.
Further details on our implementation of the fictitious probe scheme can be found in
Appendix D. The analysis of the obtained results for the operation of the device are
explained in Sec. 5.4. Finally, a summarized conclusion is given in Sec. 5.6.

5.2 Beam-splitter device with inelastic scattering

The system we will study is depicted in Fig. 5.1. It is an electronic beam split-
ter patterned on a two-dimensional electron gas (2DEG) with two (equal length)
incoming and two outgoing arms, such that the transmission probability between the
upper and the lower arms is T . The beam splitter is assumed to have also a finite
backscattering amplitude whereby electrons get reflected back into the left leads with
probability 1−TB. We have considered two possibilities for backscattering: the tech-
nically simpler case without cross reflection, for which electrons scatter back always
into their original incoming leads, and which we will term simple backscattering; and
the fully symmetric case, whereby the probability of going from any upper lead to
any lower lead remains T , be it on the left or the right, which we will call symmet-
ric backscattering. This distinction is only relevant when there is a finite inelastic
scattering on the leads, and both give very similar results in any case, so we will



Chapter 5: Effect of inelastic scattering on spin entanglement detection through
current noise 101

focus mainly in the simple backscattering case 2. Other authors [221] have previously
studied the effect of backscattering in this geometry, although considering that only
the electrons in the lead with the backgates can backscatter, whereas in our case
the two incoming leads are equivalent (the scattering occurs in the beamsplitter).
The effect, as we shall see, is however qualitatively equivalent to their result, which
is that backscattering effectively reduces the oscillation amplitude of noise with the
spin rotation angle.

We connect the right arms to ground and the two incoming arms to a reservoir that
emits non-local spin-correlated electron pairs, biased at a voltage−V . For definiteness
we choose these pairs so that the ẑ spin component of the electron coming at a given
time through lead L1 is always opposite to that of the corresponding electron coming
simultaneously through lead L2. They could be or not be entangled, depending on the
characteristics of the source and the leads from source to splitter. Time coincidence
of pairs is assumed to within a timescale τ∆ that is shorter than any other timescale
in the system, such as ∆t ≡ h/eV . This implies two constraints. On the one hand,
if the source is an entangler such as e.g. that of Ref. [38], this would mean that the
superconductor emitting the correlated pairs has a large gap ∆ as compared to the
bias voltage. On the other hand, the length of the leads connecting the entangler to
the beam-splitter device should be of equal length to within vF ∆t accuracy.

A local spin-rotation in lead L1 is implemented by the addition of backgates
above and below a section of lead L1. Applying a voltage across these backgates the
structure inversion asymmetry of the 2DEG is enhanced, inducing a strong Rashba
spin-orbit coupling in that region of the 2DEG in a tunable fashion without changing
the electron concentration [222]. This in turn gives rise to a precession of the spin
around an in-plane axis perpendicular to the electron momentum, which we chose as
the ŷ axis, resulting in a tunable spin rotation of an angle θ around ŷ after crossing
the region with backgates.

The idea behind this setup is that the spin rotation can change the symmetry
of the spatial part of the electron pair wavefunction, thus affecting the expected
shot noise in the outgoing leads, which is enhanced for even and suppressed for odd
spatial wavefunctions. The switching from bunching to antibunching signatures in
the shot noise as a function of θ is enough to identify truly entangled singlets in the
incoming current. Likewise, a θ independent shot noise is an unambiguous signal of
a triplet incoming current, since a local rotation of a triplet yields a superposition
of triplets, preserving odd spatial symmetry and therefore, antibunching. A current
of statistically mixed anticorrelated electron spins can also be distinguished from the
entangled cases from the amplitude of the shot noise oscillations with θ. Thus, this

2Admittedly, in a realistic system there could be a finite probability that a backscattered particle
be scattered back onto the system, which would probably give further corrections. We neglect these
contributions for simplicity, although they could easily be included (in the limit of small induced
delay) into the total scattering matrix by assuming a contact between the entangler and the system
of finite transparency.
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device was proposed as a realizable entanglement detector through local shot noise
measurements [106,107,221].

As discussed in the introduction of this chapter, inelastic scattering due to envi-
ronmental fluctuations could spoil the physical mechanism underlying this detector,
which is Pauli exclusion principle, and should therefore be expected to affect its per-
formance in some way. The implementation of inelastic scattering in ballistic electron
systems can be tackled quite simply on a phenomenological level through the addi-
tion of fictitious reservoirs within the scattering matrix formalism [95]. The necessary
generalization to deal with entangled currents and a simple scheme to derive the FCS
in generic systems with additional fictitious probes is presented in Appendix D. We
model spin-conserving inelastic scattering by the addition of two fictitious probes (one
for spin-up and another for spin-down) in lead L1, depicted as a single one in Fig.
5.1. We have numerically checked that the addition of another two fictitious probes
in lead L2 gives very similar results for the shot noise through the system, so we will
take only two in the upper arm for simplicity. This is also physically reasonable if
we consider only decoherence due to the backgates deposited on the upper arm to
perform the local Rashba spin-rotation, which provide a large bath of external fluctu-
ations that can provide much more effective inelastic scattering. The parameter that
controls the inelastic scattering probability is α ∈ [0, 1], being α = 1 the completely
incoherent limit.

In the following analysis we will inject into the input arms of the device currents
with different types of initial non-local electron-pair density matrix,

ρ̂ =
1

2
(|L1↑; L2↓〉〈L1↑; L2↓|+ |L1↓; L2↑〉〈L1↓; L2↑|)

+
β

2
(|L1↓; L2↑〉〈L1↑; L2↓|+ |L1↑; L2↓〉〈L1↓; L2↑|) , (5.1)

namely, i) statistical mixtures of up and down classically correlated electrons (diagonal
density matrix, β = 0), which we will also call spin-polarized currents, ii) EPR-type
singlet spin-entangled pure states (β = −1), and iii) idem with ms = 0 triplet states
(β = 1). We will use subindexes s, t, and m to denote the pure singlet, pure ms = 0
triplet and statistically mixed incoming states. Note that this expression refers to
pairs of electrons that arrive at the same time at the device, so that this density
matrix is actually expressed in a localized wavepacket basis.

Our goal is to ascertain to what extent, for a splitter transmission T , a finite
backscattering 1−TB and finite and unknown amount of inelastic scattering α in the
input leads, the shot noise in one of the output arms (R1) as a function of rotation
angle θ could still be used to demonstrate the existence or not of initial entanglement,
and that way provide a means to distinguish truly quantum-correlated states from
statistically correlated ones (unentangled).
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5.3 The technique

In Appendix D we give a detailed account of the method we have used, which
can be employed to compute the FCS of a generic mesoscopic conductor with instan-
taneous current conservation (on the scale of the measuring time) in the attached
voltage probes, and quantum entanglement in the incoming currents. A sequential
scattering approximation is implicit, which however yields the correct ω = 0 current
fluctuations in known cases with inelastic scattering, see e.g. Appendix D.2. We
summarize here the main points as a general recipe for practical calculations.

Given a certain mesoscopic system with a number of biased external leads con-
nected to reservoirs, one should add the desired voltage probes to model inelastic
scattering (or real probes), and perform the following steps to compute the long-time
FCS of the system:

(i) Define the (possibly entangled) incoming states in the external leads for a single
scattering event without the probes,

|in〉 = R[{â+}]|vac〉. (5.2)

Here R[{â+}] is an arbitrary combination of creation operators a+
n of incoming elec-

trons (in the localized wavepacket basis) acting on the system’s vacuum. In our case
it would create state (5.1).

(ii) Add the N two-legged voltage probes (one channel per leg) with individual
scattering matrices as in Eq. (D.1), and compute the total S-matrix of the multi-
terminal system, Snm. Note that Snm(t, t′) in our temporal basis is assumed to be
constant, i.e., independent of t, t′, which corresponds to an energy independent scat-
tering matrix in an energy basis.

(iii) Define outgoing electron operators b̂+
n =

∑
m Snmâ+

m. To implement instanta-
neous current conservation we expand our Hilbert space with N integer slave degrees
of freedom ~Q = {Qi}, which result in the following outgoing state after one scattering
event,

|out; ~Q〉 ≡ R[{b̂+}]
N∏
i

[
b̂+
pi;1′ b̂

+
pi;2′

]g(Qi)/2

|vac〉. (5.3)

These Qi are counters of total charge accumulated in the probes. The notation here
is that b̂+

pi;l
creates the scattered state resulting from an electron injected through leg

l = {1′, 2′} of the two-legged probe i. g(Q) encodes the response of the probe to a
certain accumulated charge Q. The specific form of g(Q) is not essential as long as it
tends to compensate for any charge imbalance in the probe. One convenient choice
is given in Eq. (D.15), which yields in our setup a minimal tripled-valued fluctuation

interval of Qi ∈ [−1, 1]. Note also that state |out; ~Q〉 in the above equation is nothing

but U∆t|φe
j
~Q〉 of Appendix D.

(iv) Compute the 3N × 3N W matrix

W ~Qb
~Qa

(~λ) = 〈out; ~Qa|P̂ ~Qb
χ̂j(~λ)|out; ~Qa〉, (5.4)
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which we write in terms of the moment generating operator χ̂j = ei
P

n λn(N̂out
n −N̂ in

n ),

where N̂ are the number operators of electrons in event j. The operator P̂ ~Qb
projects

onto the subspace of electron states that have a total of Qbi−g(Qai) particles scattered
into probe i, i.e., states in which the probe i has gone from Qai to Qbi excess electrons.
If the incoming state is not a pure state, one should perform the statistical averaging
over the relevant |out; ~Q〉 states at this point.

(v) Compute the resulting long-time current moment generating function χI(~λ) by

taking the maximum eigenvalue of matrix W . The charge generating function χ(~λ) is

obtained simply by taking the power M of χI(~λ), cf. Eq. (D.17), where M = eV t/h
is the average number of emitted pairs from the source after an experiment time t at
a bias V .

We make use of this method in our particular system by setting a single counting
field λ on output lead R1, where we wish to compute current fluctuations. This way
we derive results for χI and current cumulants [see Eqs. (D.18) and (D.19)] from the
corresponding W matrix (5.4) for the different types of injected currents of Eq. (5.1).

While explicit expressions for the current cumulant generating function log χI(λ)
are in general impossible due to the large dimensions of the W matrix (9× 9 in this
case), it is always possible to write χI in an implicit form that is just as useful to
sequentially compute all cumulants, namely, the eigenvalue equation

det
[
W (λ)− χI(λ)1

]
= 0, (5.5)

supplemented by the condition χI(0) = 1. By differentiating this equation around
λ = 0 a number of times and using (D.18), one can obtain the various zero-frequency
current cumulants on arm R1.

In the next section, instead of giving the general expression of W , which is rather
large, we provide the explicit expressions for χI and shot noise obtained in various
useful limiting cases, together with plots of the first cumulants in the {T, TB, α, θ}
parameter space.

5.4 Results

In this section we will analyze the performance of the beam splitter device of Fig.
5.1 as a detector of quantum correlations in the incoming currents through the shot
noise or higher current cumulants induced in arm R1. We will first make connection
with the results in the literature [106] by computing the shot noise in an elastic
splitter, and then we will generalize them to finite inelastic scattering probabilities and
finite backscattering. We will thus establish tolerance bounds for such imperfections
in the detector. Finally, we will address the question of whether the measurement of
higher order current cumulants could improve the tolerance bounds of the device.
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5.4.1 Shot noise

In the elastic transport limit α = 0 and with arbitrary intralead backscattering
strength 1− TB, the following expression for the shot noise is obtained,

S =
e3|V |

h
TB [1− TB + (1− β)TBT (1− T )(1 + cos θ)] , (5.6)

where constant β corresponds to the different types of incoming current, cf. Eq. (5.1).
Note that this expression holds for simple or symmetric backscattering (as defined in
Sec. 5.2). As shown by Eq. (5.6), for α = 0 the amplitude of the θ dependence is
enough to distinguish between the different types of states, if T and TB are known.
As could have been expected, the triplet current noise (β = 1) is θ independent, since
the local spin rotation only transforms the ms = 0 triplet to a different superposition
of the other triplet states, none of which can contribute to noise since each electron
can only scatter into different outgoing leads due to the Pauli exclusion principle.

However, in the presence of a strong coupling to the environment, α = 1, the
shot noise behaves very differently. Due to the complete incoherence of scattering,
which changes the orbital quantum numbers of the incoming states, the bunching-
antibunching switching disappears. Therefore Ss, St and Sm become equal and θ
independent. In particular, for simple backscattering we have

Ss = St = Sm =
e3|V |

h

TB

(1 + TB)3

[
1 + 2T 2

BT (1− T )

−TB(1 + 3T 2 − 6T )− T 3
BT 2(2 + TB)

]
. (5.7)

These features are illustrated for TB = 1 and T = 1/2 in Fig. 5.2, where we
have plotted the current shot-noise in lead R1, normalized to the constant e3V/h 3,
as a function of the spin rotation angle θ and the decoherence parameter α. Note
that for α = 1 (and without backscattering), Eq. (5.7) reduces to Ss = St = Sm =
(e3V/h)T (1−T ), which is 1/4 in normalized units. The cosine-type dependence of the
current noise with θ, S(θ) = S(π) + ∆S cos2(θ/2), where ∆S = S(θ = 0)−S(θ = π),
holds for any value of α < 1 in the singlet and polarized cases. The oscillation
amplitude of the noise for the singlet case is always twice the oscillation amplitude
of the polarized one. In contrast, the triplet shot noise (and all higher cumulants for
that matter) remains always θ independent for any α and TB.

Since our aim in this study is to find a way to distinguish between the different
incoming states of Eq. (5.1), we will disregard from now on the trivial case of the
triplet current, which is easily detectable by its θ-independence, and focus entirely
on the distinction between the singlet and mixed state cases. In these two cases,
when TB < 1, the oscillatory behaviour with θ remains, although it is no longer

3The shot noise normalized to e3V/h is in fact the Fano factor since the total current is IR1 =
e2|V |TB/h.



106
Chapter 5: Effect of inelastic scattering on spin entanglement detection through

current noise

Figure 5.2: In the upper plot (a) we represent the current shot-noise in units of e3V/h
in lead R1 for the singlet and ms = 0 triplet incoming states, as a function of spin
rotation angle θ and decoherence strength α. The same for the polarized spin state
case is presented in the lower plot (b). Inter-lead transmission probability between
upper and lower arms T is fixed to 0.5, and no backscattering (TB = 1) is assumed.
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Figure 5.3: Normalized value of shot-noise in lead R1 at zero spin rotation angle as a
function of beam splitter transmission TB for T = 0.5. Solid (blue) lines correspond
to singlet incoming current whereas dashed (red) lines account for the polarized one.
In both cases, different values of inelastic scattering probability have been considered,
from α = 0 (upper curves) to α = 1 (lower curves) in steps of 0.25. Inset: the same
for the oscillation amplitude with θ of the shot-noise.

purely sinusoidal. Besides, its oscillation amplitude quickly decreases with increasing
backscattering, making the entanglement detection scheme harder. However, we will
now show that, knowing only the value of the shot-noise at zero spin rotation angle
(or alternatively the amplitude ∆S), it is possible to distinguish between the different
incoming states for not-too-strong decoherence.

5.4.2 Robust entanglement detection scheme

Tuning once again the beam splitter to the symmetric T = 1/2 point, which turns
out to be the optimum point of operation for entanglement detection, we notice from
Fig. 5.2 that the analysis of the θ dependence of the shot-noise at an arbitrary and
unknown value of α indeed precludes from a clear distinction of the singlet and mixed
state cases.

A more complete picture can be obtained by plotting the value of the shot-noise
at θ = 0 in the interval α ∈ [0, 1] as a function of TB. This is done in Fig. 5.3 for
the case of simple backscattering. Solid (blue) lines correspond to singlet incoming
current, and dashed (red) lines to the polarized one. Moreover, the upper curve in
both sets of curves accounts for the case of α = 0, and for the next ones the value of
the inelastic scattering parameter increases, in steps of 0.25, until α = 1 for the lower
curves (which coincide for both the entangled and polarized cases). The same analysis
can be done for the behaviour of the amplitude ∆S as a function of TB, as shown in
the inset of Fig. 5.3 (given also for simple backscattering). In this latter case, the
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amplitudes for both the singlet and the polarized currents have in fact a very simple
analytical form, the singlet case ranging from T 2

B to 0 and the polarized one from
T 2

B/2 to 0 as we sweep from α = 0 to α = 1. Therefore, we see how the θ-independent
background noise introduced by the finite backscattering in the main plot of Fig. 5.3,
which could in principle degrade the performance of the entanglement detector as
mentioned in Ref. [107], can be filtered out by measuring the amplitude ∆S. We also
note that if a symmetric backscattering is considered, the resulting curves for Fig.
5.3 are qualitatively the same, and therefore it does not affect the above discussion.

We can observe in both plots of Fig. 5.3 that if α is unknown, as it is usually the
case in an experiment, the classical and quantum currents are distinguishable from a
single noise measurement (or two in the case of the inset) only if its value is found
to lie outside of the overlapping region between the two sets of curves. According
to this model, this should always happen for values of inelastic scattering smaller
than at least one half. In the case of the main figure, even higher values of α can
be distinguished for values of TB close to one. In any case, the values of α for
which the noise measurement is no longer able to distinguish a singlet entanglement
from a statistically mixed case are rather high, α ∈ [0.5, 1]. This means that, in a
realistic situation where decoherence is not too high, shot-noise measurements remain
enough for determining if the source feeding the beam-splitter is emitting entangled
or statistically mixed states.

5.4.3 Higher order cumulants

We could ask whether it is possible to distinguish between incoming singlet-
entangled and polarized currents for a wider range of parameters α by analyzing
higher order cumulants. The short answer is ‘no’.

As we did for the noise in Fig. 5.2, we can plot the angular dependence of the
third moment, the skewness, for different values of inelastic scattering parameter α.
This is shown in a 2D plot in the inset of Fig. 5.4(b) for T = 0.5 and TB = 1. As
before, solid (blue) lines and dashed (red) lines correspond to spin singlet-entangled
and polarized incoming currents, respectively. Now we find that the behaviour of
skewness with θ is not monotonous as α varies. For α = 0 and for α = 1 at TB = 1
the third cumulant is zero for every angle both for entangled and for mixed states
(the probability distribution of the current is symmetric for those parameters as was
previously noted in the α = 0 case in Ref. [108]). Moreover, this means that the
skewness is not a good entanglement detector for a near perfect beam splitter, nor
when the inelastic scattering in strong. For intermediate values of decoherence, still
at TB = 1, the skewness oscillates with the spin rotation angle and its oscillation
amplitude, 〈〈I3〉〉(θ = 0)−〈〈I3〉〉(θ = π), has a maximum around α ≈ 0.5. This oscil-
lation range is depicted in the main plots of Fig. 5.4 as a function of the transmission
between left and right arms TB (where simple backscattering has been considered).
Several values of the inelastic parameter are differentiated using different shades of
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Figure 5.4: Oscillation range with angle θ of the skewness in lead R1, in units of
e4V/h, as a function of beam-splitter transmission between left and right arms TB. T
is fixed to the optimal point T = 0.5. Different oscillation ranges for different values
of inelastic scattering are indicated by different shades of grey, ranging from pale
gray for α = 0 to dark gray for α = 1 in steps of 0.25. The case of singlet-entangled
incoming current is considered in plot (a), whereas in plot (b) the incoming current
is in a polarized state. The actual oscillation of skewness with Rashba spin rotation
angle for entangled current (solid blue lines) and polarized current (dash red lines) is
plotted in the inset of figure (b) (see main text).
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grey, ranging from pale gray for α = 0 to dark gray for α = 1 in steps of 0.25. The
main features can be summarized as follows. First, both for the entangled and the
polarized current, the broadest oscillation range occurs for α = 0 (being bigger for
the singlet-entangled case). Second, for α = 1 the oscillation amplitude in both cases
is zero, although the skewness remains finite and positive (shifting from a Gaussian to
a Poissonian distribution of current as TB goes from 1 to 0). For TB smaller than 0.9
approximately, the behaviour of the oscillation range is monotonous with α, it simply
decreases with it. For small values of TB, the skewness coincides with the shot-noise,
which is expected since the probability distribution for a tunnel barrier recovers a
Poisson distribution, even in the presence of inelastic scattering. In general, the sign
of the skewness is reversed in a wide range of parameters by tuning the spin rotation
θ.

Concerning our entanglement detection motivation, comparing Fig. 5.4(a) and
5.4(b) we find that the third cumulant doesn’t provide any further information in
our search of a way to distinguish between entangled and non-entangled incoming
states. For TB of the order of 0.9 and above, due to the non-monotonous behaviour
of the oscillation range with α, the skewness of our beam splitter setup can hardly
be used as a detector of entanglement at all. For smaller values of TB, we are able
to discriminate between different currents in the same range of inelastic scattering
parameter α as we could with the noise, this is, from zero decoherence to roughly
α = 0.5.

We have also analyzed further cumulants, whose behaviours with TB and θ get
more intricate as the order of the cumulant increases, and have found the same
qualitative result. Either they are not useful tools for entanglement detection or the
range of parameters α and TB is not improved from what we find with the shot-noise
measurements.

5.5 Related experiments

Traditionally, transport experiments on small electronic devices have dealt with
time averaged quantities like conductance. In the recent years and seeking for sup-
plementary information about electronic transport, a number of experiments have
considerer temporal fluctuations of the current [95]. Non-equilibrium noise has been
widely explored to determine, for example, the effective charge of carriers [223–226] or
to study the transmission properties of quantum coherent devices such as quantum
point contacts [227, 228], diffusive wires [229], or chaotic cavities [230]. The third
moment of the voltage fluctuations in a conductor has also been measured experi-
mentally, for the first time, by B. Reulet, J. Senzier and D. E. Prober in the work
called “Environmental effects in the third moment of voltage fluctuations in a tunnel
junction” [231], in 2003. In particular, they measured the skewness on nonsupercon-
ducting tunnel junctions, and they found that the measurements were significantly
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affected by the electromagnetic environment of the sample.

Also current-current correlations between different leads in multiterminal devices
have been measured. Negative correlations due to the Pauli exclusion principle have
been observed in distinct experiments, like fermionic Hanbury Brown and Twiss ex-
periments [232–234].

In this section we describe briefly the experiment “Positive cross correlations in
a normal-conducting fermionic beam splitter”, by S. Oberholzer et al in 2006 [101].
In this work the authors investigate a three terminal beam-splitter structure imple-
mented in a normal-conducting fermionic electron gas in the quantum Hall regime.
They measure the cross correlations between the current fluctuations in the two exit
leads and find that they can be negative, zero, or even positive, depending on the
scattering mechanism within the device. In particular, positive sign occurs due to
interaction between different edge states by means of an extra voltage probe attached
at the middle of the device. The positive sign does not reflect the statistics of the
fermionic particles which usually antibunch. Due to this result, the authors warn that
the observation of positive correlations in fermionic systems can be interpreted as a
sign of entanglement only if effects such as the one they present can be ruled out. We
have focussed our attention in this experiment for various reasons. On the one hand,
they are implementing a fermionic beam-splitter. Besides, they are introducing in
their device a real voltage probe to produce inelastic scattering. Those things make
connection to our work in this chapter (although the experimental setup and the mo-
tivation are different). On the other hand, although positive cross correlations have
been predicted by various theoretical works (using e.g. entanglers), they had not been
seen before in mesoscopic devices, which makes this work an important contribution.

5.6 Conclusions

In this work we have analyzed the effect of inelastic scattering, modeled by spin-
current conserving voltage probes, on entanglement detection through a beam-splitter
geometry. We have shown that, unlike elastic orbital dephasing [73], the action of
inelastic processes in the beam-splitter cannot be neglected, since it directly affects
the underlying physical mechanism of the detector, which is the fact that two electrons
with equal quantum numbers cannot be scattered into the same quantum channel. If
energy is not conserved, such antibunching mechanism is no longer perfect, and the
entanglement detection scheme has to be revised.

However, we have found that detection of entanglement through shot noise mea-
surements remains possible even under very relaxed conditions for imperfections in
the beam-splitter device and substantial inelastic scattering. Even if a reliable micro-
scopic description of inelastic processes is not available, the present analysis suggests
that the detection scheme is robust for inelastic scattering probabilities up to 50%.

We have also shown that higher current cumulants do not contain more infor-
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mation about the entanglement of the incoming currents than the shot noise. We
have analyzed in particular the skewness of current fluctuations, finding that finite
backscattering and inelastic scattering strongly affect the asymmetry of current fluc-
tuations. In particular, a positive skewness is developed as the beam splitter trans-
parency is lowered.

Finally, we have developed a novel way to implement current conservation in
voltage probe setups when the incoming currents are non-locally entangled, which
can be applied to a wide variety of problems where entanglement is key.



Appendix A

Tunneling Hamiltonian in real
space: discrete vs. continuum limit

In Chapter 2 we derived a local tunneling Hamiltonian (2.24) starting from the
Bardeen model for electron tunneling [143]. This formalism, which is based on the
tunneling approximation, has been sometimes criticized or called into question. That
is why, in this Appendix, we want to derive (and therefore, justify) the same kind
of Hamiltonian starting from a different point of view. We will consider a tight-
binding discrete formalism, where the shape and validity of the hopping Hamiltonian
is out of question, and we will find the very dependence with momentum and space of
Hamiltonians of Eqs. (2.4), (2.12) and (2.24), taking the continuous space limit. This
means that, if in the discrete limit the hopping Hamiltonian depends on the creation
and destruction second-quantization operators at the last sites connecting two chains,
in the continuum limit this behaviour will translate into normal derivatives of the field
operators at the boundaries where the barrier is located.

Take a discrete chain made of N sites with period a described by the Hamiltonian

H0 = −t

N−1∑
i=1

c†i+1ci + H.c., (A.1)

where t = ~2/2ma2 > 0 is the hopping parameter that yields an effective mass m in
the continuum limit.

The eigenstates of this chain are of the form

|φn〉 =

(
2

N + 1

)1/2 N∑
i=1

sin(knzi)c
†
i |vac〉, (A.2)

where zi = ia and kn = πn/a(N + 1) with i, n ∈ [1, N ]. The eigenvalues are

En = −2t cos(kna). (A.3)
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The basis set {|φn〉} is orthonormal. Thus we may write

c†kn
=

(
2

N + 1

)1/2 N∑
i=1

sin(knzi)c
†
i , (A.4)

c†i =

(
2

N + 1

)1/2 N∑
n=1

sin(knzi)c
†
kn

. (A.5)

We write the transfer Hamiltonian between two N -site chains as

HT = −t′a†1b−1 + H.c (A.6)

=
2t′

N + 1

N∑
n=1

N∑
m=1

sin(kna) sin(kma)a†kn
bkm + H.c. (A.7)

which may be treated as a small perturbation when t′ ¿ t.
To investigate the continuum limit, we take a → 0 and t →∞ so that m and kF

remain finite. We also take N À 1. Noting that the sine functions in (A.7) can be
approximated by their arguments kna . kF a ¿ 1 and that kmax = π/a →∞, we get

HT =
2t′a3

L

∑

k,q>0

k q a†kbq + H.c. (A.8)

This Hamiltonian is bilinear in the momenta of the electron on the right and left
chain. If we were in 3D we would specify that the bilinearity refers to the momenta
perpendicular to the interface plane. This Hamiltonian is analogous to that which
we proposed for the continuum Bardeen theory in the case of a high barrier [see Eqs.
(2.4) and (2.12)].

We may work out the corresponding Hamiltonian in real space. For that we
note that, in the continuum limit, HT in Eq. (A.6) can be expressed in terms of
field operators evaluated in z = ±a (through the relationship ci =

√
aψ(z) and

equivalently for the creation operator). When a → 0, the field operators can be
expanded as

ψ(a) = ψ(0) + a
dψ(z)

dz

∣∣∣∣
z=0

+O(a2) , (A.9)

where ψ(0) = 0 is a condition that results naturally from the properties of the wave
functions in a chain starting in i = 1 or i = −1. For such chains, i = 0 is an
imaginary point where the wave function necessarily vanishes; it is the place where
we would locate the hard wall in a continuum description [235]. Then the tunneling
Hamiltonian can be written

HT = t′a3 dψ†R(z)

dz

∣∣∣∣∣
z=0

dψL(z′)
dz′

∣∣∣∣
z′=0

+ H.c. (A.10)
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This Hamiltonian is exactly the one-dimensional version of that in Eq. (2.24). The
fact that we have derived it from a completely different set of physical arguments
should be viewed as a definite proof of the adequacy of the tunneling Hamiltonians
proposed in section 2.7. The Hamiltonians (A.8) and (A.10) have been obtained in
the continuum limit. On the other hand, Eqs. (2.12) and (2.24) were derived for high
barriers or, equivalently, low energies. Clearly, this is not a coincidence, since it is at
low energies where the long wavelengths make the electron move in the chain as in
continuum space.



Appendix B

Total tunneling Andreev current
vs. interface radius

In this appendix we show the complete (and lengthy) expressions of the Andreev
current between NS hybrid structures through a tunneling circular interface as a
function of its radius, and we explain some convenient approximations in order to
deal with them. This current was analyzed from a physical point of view in Sec. 2.7
of Chapter 2.

To calculate the total current as a function of the interface radius R we have to
evaluate the matrix element (2.32) using hopping energies obtained from the tun-
neling Hamiltonian (2.25). In the resulting expression we need to integrate over
the final momenta of the two electrons in the normal metal, the momentum of
the intermediate virtual state consisting of a quasiparticle in the superconductor,
as well as the coordinates of the points where each electron crosses the interface
area. The integrations over the momenta in the final state lead to four angular
integrals (θ1,2 ∈ [0, π/2]; ϕ1,2 ∈ [0, 2π]), the moduli being fixed by the condition
kBT, eV → 0. The integration over the superconductor excited states leads to three
integrals: θs ∈ [0, π], ϕs ∈ [0, 2π], q ∈ [0, qc]. On the other hand, integration over
the hopping points of each electron leads to two interface integrals (r1,2 ∈ [0, R],
θr1,r2 ∈ [0, 2π]), which makes four more integrals, totalling eleven real variables to be
integrated. Using the symmetry property that the integrand is independent of one
azimuthal angle, and solving analytically the four real space integrals, we are left with
six non-reducible nested integrals of strongly oscillating functions.

We define ~κ ≡ k/kF , ~% ≡ q/kF . Since the modula of the final momenta are fixed
by conservation requirements, we may write κ‖i = sin θi, κzi = cos θi (i = 1, 2). For
the virtual states in the superconductor: %‖ = % sin θs, %z = % cos θs.
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The general, exact formula for the total current as a function of R is

I(R) = IV τ 4 (kF R)2

4π3

∫
dΩ1

∫
dκ2zκ

2
1zκ

2
2ze

2p0w[1−b(κ1z ,κ2z)]

×
[

2

π

∫
d%

δ

(%2 − 1)2 + δ2
%4

∫
dΩse

p0w[1−b(%z)]
∏

j=1,2

a(κzj, %z)J(|~%‖ − ~κ1‖|, |~%‖ + ~κ2‖|)
]2

,

(B.1)

where J is a short-hand notation for

J(x, y) ≡ J1(kF R x)J1(kF R y)

x y
. (B.2)

The first-order Bessel functions result from the exact integration over the tunneling
points r1 and r2.

For δ → 0, the Lorentzian becomes a delta function and the integral over % is
evaluated exactly. We get (with u still arbitrary)

I(R) = IV τ 4 (kF R)2

4π3

∫
dΩ1

∫
dκ2zκ

2
1zκ

2
2ze

2p0w[1−a(κ1z ,κ2z)]

×
[∫

dΩse
p0w[1−b(%z)]

∏
j=1,2

a(κzj, %z)J(|~%‖ − ~κ1‖|, |~%‖ + ~κ2‖|)
]2

. (B.3)

For δ arbitrary and u À 1, Eq. (B.1) becomes

I(R) = IV τ 4 (kF R)2

4π3

∫
dΩ1

∫
dκ2zκ

2
1zκ

2
2z

×
[

2

π

∫
d%

δ

(%2 − 1)2 + δ2
%4

∫
dΩsJ(|~%‖ − ~κ1‖|, |~%‖ + ~κ2‖|)

]2

. (B.4)

Finally, for both δ → 0 and u À 1, we obtain

I(R) = IV τ 4 (kF R)2

4π3

∫
dΩ1

∫
dκ2zκ

2
1zκ

2
2z

[∫
dΩsJ(|~%‖ − ~κ1‖|, |~%‖ + ~κ2‖|)

]2

, (B.5)

which for kF R ¿ 1 leads to Eq. (2.52) in the main text. This is easy to see considering
that limx→0 J1(kF R x)/x = kF R/2.

Even after making δ, u−1 → 0, the resulting expression (B.5) is such that a nu-
merical integration for arbitrary R is not yet possible. In order to evaluate (B.3) and
(B.5) numerically we need to introduce a set of two approximations which are good
for kF R À 1 and reasonable for intermediate R. To introduce the first approximation
we go back to the original expression (2.26), where the space coordinates have not yet



118 Appendix B: Total tunneling Andreev current vs. interface radius

been integrated. Then we shift from the two space coordinates (r1, r2) to centre-of-
mass and relative coordinates (rc, r). The integration domain of the centre-of-mass
coordinate rc is still a circle of radius R. However, the integration region of the rel-
ative coordinate r is more complicated: It is eye-shaped and centred around rc. The
first approximation consists in assuming that, for all rc, the integration domain of
the relative coordinate is circular instead of eye-shaped. The area of such a circular
region is a free parameter which can be adjusted by, e.g. comparing the approximate
result with the exact calculation for those values of R for which the latter can be
performed.

It is intuitive (and rigorously proved in Subsec. 2.7.2) that, because of diffraction,
when R . λF , the parallel momentum is not conserved and, in particular, the two
electrons do not leave necessarily with opposite parallel momenta [see Fig. (2.5)].
Nevertheless, as R increases the interface begins to be large enough so as to permit
parallel momentum to become better conserved. A quasi-delta function δ̃(k1‖ + k2‖)
effectively appears. In particular we have: limR→∞ J1(k‖R)/k‖ = 2πδ(k‖)/R. Thus,
our second approximation consists in assuming that, for all R > λF , the quasi-delta is
an exact delta: δ̃ → δ. This is equivalent to the assumption that there is no diffraction,
i.e. that we work in the ray optics limit. This approximation becomes exact as
R →∞ and it is a reasonable one for finite radii. Of course, this approximation fails
for R . λF , yielding a wrong R4 behaviour (see discussion of Sub-subsections 2.7.1
and 2.7.1).

With the two previous approximations we can reduce the number of numerical
integrals from five to three. To write the resulting expressions, let us introduce some
compact notation. We define x ≡ cos θ (where θ is the angle formed by the outgoing
momentum with the direction normal to the interface), y ≡ cos θq (θq having a similar
definition within the superconductor), λ ≡ kF |rc|, and µ ≡ kF |r|.

For δ → 0 and arbitrary u we obtain

I(R) ' IV τ 4

∫ 1

0

dx x3e2p0w[1−b(x)]

{∫ kF R

0

dλ
2λ

(kF R)2

∫ 1

0

dy
r(λ)y2

x2 − y2
[a(x, y)]2e2p0w[1−b(y)]

×
[√

1− y2 J0

(
r(λ)

√
1− x2

)
J1

(
r(λ)

√
1− y2

)

−
√

1− x2 J0

(
r(λ)

√
1− y2

)
J1

(
r(λ)

√
1− x2

)]}2

, (B.6)

where r(λ) is the radius of the approximate circular domain over which the relative
coordinate r is integrated. If the circle is assumed to have the same area as the eye,
we obtain

r(λ) ≡
√

8

π

[
(kF R)2 arccos

(
λ

kF R

)
− λ

√
(kF R)2 − λ2

]1/2

, (B.7)

but in practice this criterion is found to overestimate the total current. Thus we
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decide to adopt the ansatz

r(λ) ≡ 2kF R

(
1− λ

kF R

)α

, (B.8)

where α is a parameter to be adjusted by comparison with the exact solution in those
cases where it can be computed. In particular, α has been adjusted from the last
two exact numerical values of each curve, i.e. from the two largest computationally
possible radii. We note that both (B.7) and (B.8) satisfy the requirement r(λ) →
2kF R for λ → 0. The value α = 1 corresponds to the case where the circle is
chosen to be the maximum circle which fits within the eye-shaped integration domain.
As expected, this criterion underestimates the current. The formula (B.7), which
overestimates the result, can be approximated with α ≈ 0.7. Thus it comes as no
surprise that the value of α obtained by comparing with the exact result (when
available) is an intermediate number, namely, α = 0.84, which has been used for the
NS curves in Fig. 2.4.

For arbitrary δ and u À 1, the total current becomes

I(R) ' IV τ 4

∫ 1

0

dx x3

[
2

(kF R)2

∫ kF R

0

dλ λ

∫ r(λ)

0

dµ µJ0(µ
√

1− x2)B(µ)

]2

,(B.9)

B(µ) =

{
sin[S(δ)µ)]

µ3
−

4
√

1 + δ2 cos[arctan δ/2 + S(δ)µ]

µ2

}
e−D(δ)µ, (B.10)

where

S(δ) =

(√
1 + δ2 + 1

2

)1/2

δ¿1→ 1 , (B.11)

D(δ) =

(√
1 + δ2 − 1

2

)1/2
δ¿1' δ

2
. (B.12)

Thus, for δ ¿ 1 we may write

B(µ) '
[
sin(µ)

µ3
− cos(µ + δ/2)

µ2

]
e−δµ/2. (B.13)

The effect of the phase-shift δ/2 is only appreciable for µ . δ, i.e. for r . δλF ¿
λF , as can be seen by expanding B(µ) for small µ:

B(µ) =
δ

2µ
+

1

3
− δµ

4
− δ2

8
+O(δ4, µ2). (B.14)

The phase-shift generates a divergence for µ → 0. Although integrable thanks to the
multiplying µ factor in Eq. (B.9), this divergence affects the final result. Its range
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of relevance may be estimated by making δ/2µ equal to the limiting value 1/3 which
one would obtain with δ = 0. This yields a range r0 = (3/4π)δλF , which will be
washed out by any realistic momentum cutoff qc ∼ kF ¿ kF /δ.

Finally, we note that comparison of Eqs. (2.58) and (B.13) clearly reveals that
the entangled current Ie(r) given in (2.58) is essentially proportional to B2(kF r). As
discussed in Sec. 2.9, Ie(r) decays faster than the prefactor obtained from momentum-
independent hopping matrix elements [see Eq. (2.70)]. The current increase which
results from such an unphysical approximation translates into a divergent thermody-
namic limit (see again Section 2.9).



Appendix C

Probability distributions for the
CH inequality

The aim of Chapter 4 is to evaluate the CH inequality of Eq. (4.20) [or Eq. (4.12)]
and to see wether it can be violated. In order to do it we need to calculate single
terminal and joint terminal probability distributions, which are expressed in terms of
characteristic functions according to Eq. (4.14).

The most general expression for the characteristic function when spin-σ electrons
are counted in lead 1 and spin-σ′ electrons are counted in lead 2 is

χE(λ1σ, λ2σ′) = 1 +
(
e−iλ1σ − 1

) 〈N̂1σ
O 〉+

(
e−iλ2σ′ − 1

) 〈N̂2σ′
O 〉

+
(
e−iλ1σ − 1

) (
e−iλ2σ′ − 1

) 〈N̂1σ
O N̂2σ′

O 〉 (C.1)

for each relevant energy range: 0 < E < µ and µ < E < eV . When both spin species
are counted in one of the terminals, the characteristic function reads

χE(λ1, λ2σ′) = 1 +
(
e−iλ1 − 1

) 〈
(
N̂1↑

O + N̂1↓
O

)
〉+

(
e−iλ2σ′ − 1

) 〈N̂2σ′
O 〉

+
(
e−iλ1 − 1

) (
e−iλ2σ′ − 1

) 〈
(
N̂1↑

O + N̂1↓
O

)
N̂2σ′

O 〉+
(
e−iλ1 − 1

)2 〈N̂1↑
O N̂1↓

O 〉
+

(
e−iλ1 − 1

)2 (
e−iλ2σ′ − 1

) 〈N̂1↑
O N̂1↓

O N̂2σ′
O 〉 (C.2)

for counting both spins in terminal 1, where we have set λ1↑ = λ1↓ ≡ λ1.

Using Eqs. (4.14), (4.18) and (C.1), at zero temperature, one can calculate the
single terminal probability distribution:

P θ1(Q1σ) =
1

2π

∫ π

−π

dλ1σ

[
1 +

(
e−iλ1σ − 1

) 〈N̂1σ
O 〉S

]Mµ

×
[
1 +

(
e−iλ1σ − 1

) 〈N̂1σ
O 〉B

]M−Mµ

eiλ1σQ1σ , (C.3)
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where 〈N̂1σ
O 〉S,B ≡ 〈ψS,B| N̂1σ

O |ψS,B〉. After integration over λ1σ we get

P θ1(Q1σ) =
(
1− 〈N̂1σ

O 〉S
)Mµ

(
1− 〈N̂1σ

O 〉B
)M−Mµ−Q1σ

(
〈N̂1σ

O 〉B
)Q1σ

×
Min[Mµ,Q1σ ]∑

n=Max[0,Q1σ−M+Mµ]

(
Mµ

n

)(
M −Mµ

Q1σ − n

) [
〈N̂1σ

O 〉S(1− 〈N̂1σ
O 〉B)

〈N̂1σ
O 〉B(1− 〈N̂1σ

O 〉S)

]n

. (C.4)

If one chooses µL = eV and µR = 0, one obtains µ = eV
2

and Mµ = M
2

. Therefore, in
order for Mµ to be integer, M must be an even number.

Using Eqs. (4.14), (4.18) and (C.2), the single terminal probability distribution
when both spin species are counted in the terminal is

P (Q1) =
1

2π

∫ π

−π

[
1 +

(
e−iλ1 − 1

) 〈N̂1
O〉S +

(
e−iλ1 − 1

)2 〈N̂1↑
O N̂1↓

O 〉S
]Mµ

×
[
1 +

(
e−iλ1 − 1

) 〈N̂1
O〉B +

(
e−iλ1 − 1

)2 〈N̂1↑
O N̂1↓

O 〉B
]M−Mµ

eiλ1Q1dλ1, (C.5)

where 〈N̂1
O〉S,B ≡ 〈

(
N̂1↑

O + N̂1↓
O

)
〉S,B. Although this is simply a single terminal prob-

ability distribution, the result of its integral is too cumbersome to be given here, no
wonder what happens with joint terminal probabilities. As we mentioned in Sec. 4.3,
explicit expressions of the probability distributions in terms of sums are lengthy and
complicated for practical calculations.

It is possible, nevertheless, to express the result for the various probabilities in a
quite simple fashion, which makes them manageable for computational analysis. The
key point is to realize that the characteristic functions are nothing but polynomial
functions on the variables eiλi of different degrees. The effect of each integral of
Eq. (4.14), together with its accompanying complex exponential eiλiQi/(2π), is simply
to select the coefficient of the characteristic function polynomial which corresponds
to the power equal to Qi. Consequently, the result of the integrals for the various
probabilities can be expressed in terms of Qi order derivatives of the characteristic
function, as we show below. Note that, whenever both analyzers are present, we will
choose without loss of generality: σ =↑ and σ′ =↑. For single terminal probability
distributions we will also set σ =↑ for lead 1 and σ′ =↑ for lead 2, although resulting
expressions will not depend either on the direction of the spin or on the angle of the
analyzer.

For the single terminal probability distribution with analyzer we have

P θ1(Q1↑) =
1

2π

∫ π

−π

dλ1↑eiλ1↑Q1↑χ(λ1↑) =
1

Q1↑!
dQ1↑χ(λ1↑)
d(eiλ1↑)Q1↑

∣∣∣∣
e
iλ1↑→0

, (C.6)

where χ(λ1↑) can be extracted from Eq. (C.1) making λ2↑ = 0 and using Eq. (4.18).
Since µ = eV

2
, we have that Mµ = M

2
, being M the total number of emitted particles
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per lead or per spin. The expectation values needed in Eq. (C.1) above and below
energy µ are given in Sec. C.1. The single terminal probability distribution in the
absence of analyzer is

P (Q1) =
1

2π

∫ π

−π

dλ1e
iλ1Q1χ(λ1) =

1

Q1!

dQ1χ(λ1)

d(eiλ1)Q1

∣∣∣∣
eiλ1→0

, (C.7)

where the characteristic function can be extracted now from Eq. (C.2), setting again
λ2↑ = 0. We can get similarly the expressions for P θ2(Q2↑) and P (Q2).

The joint probability distribution when both analyzers are present gives

P θ1,θ2(Q1↑, Q2↑) =
1

(2π)2

∫ π

−π

dλ1↑eiλ1↑Q1↑

∫ π

−π

dλ2↑eiλ2↑Q2↑χ(λ1↑, λ2↑)

=
1

Q1↑!Q2↑!
dQ1↑dQ2↑χ(λ1↑, λ2↑)

d(eiλ1↑)Q1↑d(eiλ2↑)Q2↑

∣∣∣∣
e
iλ1↑ ,e

iλ2↑→0

, (C.8)

which only depends on the angle Θ ≡ (θ1± θ2)/2, as we showed in Section 4.3. When
there is only one analyzer we have

P θ1,−(Q1↑, Q2) =
1

(2π)2

∫ π

−π

dλ1↑eiλ1↑Q1↑

∫ π

−π

dλ2e
iλ2Q2χ(λ1↑, λ2)

=
1

Q1↑!Q2!

dQ1↑dQ2χ(λ1↑, λ2)

d(eiλ1↑)Q1↑d(eiλ2)Q2

∣∣∣∣
e
iλ1↑ ,eiλ2→0

(C.9)

and

P−,θ2(Q1, Q2↑) =
1

(2π)2

∫ π

−π

dλ1e
iλ1Q1

∫ π

−π

dλ2↑eiλ2↑Q2↑χ(λ1, λ2↑)

=
1

Q1!Q2↑!
dQ1dQ2↑χ(λ1, λ2↑)

d(eiλ1)Q1d(eiλ2↑)Q2↑

∣∣∣∣
eiλ1 ,e

iλ2↑→0

. (C.10)

However, these two last expressions are not strictly needed since one can use the rela-
tions in Eq. (4.19). Again, all the expectation values which are needed for evaluating
these probabilities are given in Sec. C.1.

C.1 Expectation values for the FCS

Above we have presented convenient expressions for the single terminal and joint
terminal probability distributions required to test the CH inequality of Eq. (4.20).
These probabilities are expressed in terms of different expectations values, which we
collect in the following subsections.
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C.1.1 Setup with two additional reservoirs

Let us consider the setup depicted in Fig. 4.1, where two additional reservoirs are
present. The expectation values for energies 0 < E < µ as a function of transmission
T , decoherence parameter α and analyzers’ angle Θ are

〈N̂1↑
O 〉S = 〈N̂2↑

O 〉S =
2
√

T [
√

T + α(2−√T )− α2(1−√T )]

[2− α(1−√T )]2
, (C.11)

〈N̂1
O〉S = 〈N̂2

O〉S =
4
√

T [
√

T + α(2−√T )− α2(1−√T )]

[2− α(1−√T )]2
, (C.12)

〈N̂1↑
O N̂1↓

O 〉S = 〈N̂2↑
O N̂2↓

O 〉S =
4Tα[2

√
T + 2α(1−√T )− α2(1−√T )]

[2− α(1−√T )]3
, (C.13)

〈N̂1↑
O N̂2↑

O 〉S =
4T{[α(2− α) +

√
T (1− α + α2)]2 − T (1− α)2 cos Θ}
[2− α(1−√T )]4

, (C.14)

〈N̂1
ON̂2↑

O 〉S = 〈N̂1↑
O N̂2

O〉S =
8T [

√
T + α(2−√T )− α2(1−√T )]2

[2− α(1−√T )]4
, (C.15)

〈N̂1↑
O N̂1↓

O N̂2↑
O 〉S = 〈N̂1↑

O N̂2↑
O N̂2↓

O 〉S = 8
√

T 3α[2
√

T + 2α(1−
√

T )− α2(1−
√

T )]

× [
√

T + α(2−√T )− α2(1−√T )]

[2− α(1−√T )]5
. (C.16)

The expectation values for energies µ < E < eV are

〈N̂1↑
O 〉B = 〈N̂2↑

O 〉B =
2T (1− α)

[2− α(1−√T )]2
, (C.17)

〈N̂1
O〉B = 〈N̂2

O〉B =
4T (1− α)

[2− α(1−√T )]2
, (C.18)

〈N̂1↑
O N̂1↓

O 〉B = 〈N̂2↑
O N̂2↓

O 〉B = 0, (C.19)

〈N̂1↑
O N̂2↑

O 〉B =
8T 2(1− α)2 sin2(Θ/2)

[2− α(1−√T )]4
, (C.20)

〈N̂1
ON̂2↑

O 〉B = 〈N̂1↑
O N̂2

O〉B =
8T 2(1− α)2

[2− α(1−√T )]4
, (C.21)

〈N̂1↑
O N̂1↓

O N̂2↑
O 〉B = 〈N̂1↑

O N̂2↑
O N̂2↓

O 〉B = 0. (C.22)

C.1.2 Setup with one additional reservoir

Let us now consider the asymmetrical setup of Fig. 4.9, where there is only one
additional reservoir. For energies 0 < E < µ we have that 〈N̂1↑

O 〉S, 〈N̂1
O〉S and

〈N̂1↑
O N̂1↓

O 〉S are equal to the case with two fictitious reservoirs. The other expectation
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values are

〈N̂2↑
O 〉S =

T

2
, (C.23)

〈N̂2
O〉S = T, (C.24)

〈N̂2↑
O N̂2↓

O 〉S = 0, (C.25)

〈N̂1↑
O N̂2↑

O 〉S =

√
T 3α(2− α) + T 2[1− α + α2 − (1− α) cos Θ]

[2− α(1−√T )]2
, (C.26)

〈N̂1
ON̂2↑

O 〉S = 〈N̂1↑
O N̂2

O〉S =
2
√

T 3[
√

T + α(2−√T )− α2(1−√T )]

[2− α(1−√T )]4
,(C.27)

〈N̂1↑
O N̂1↓

O N̂2↑
O 〉S =

2T 2α[2
√

T + 2α(1−√T )− α2(1−√T )]

[2− α(1−√T )]3
, (C.28)

〈N̂1↑
O N̂2↑

O N̂2↓
O 〉S = 0. (C.29)

For energies µ < E < eV we have that 〈N̂1↑
O 〉B, 〈N̂1

O〉B, 〈N̂1↑
O N̂1↓

O 〉B, 〈N̂2↑
O N̂2↓

O 〉B,

〈N̂1↑
O N̂1↓

O N̂2↑
O 〉B and 〈N̂1↑

O N̂2↑
O N̂2↓

O 〉B are equal to the case with two additional reser-
voirs. The other expectation values are

〈N̂2↑
O 〉B =

T

2
, (C.30)

〈N̂2
O〉B = T, (C.31)

〈N̂1↑
O N̂2↑

O 〉B =
2T 2(1− α) sin2(Θ/2)

[2− α(1−√T )]2
, (C.32)

〈N̂1
ON̂2↑

O 〉B = 〈N̂1↑
O N̂2

O〉B =
2T 2(1− α)

[2− α(1−√T )]2
. (C.33)



Appendix D

Phenomenological description of
inelastic scattering

Voltage probes are frequently real components of mesoscopic devices, but have
also been used traditionally for phenomenological modeling purposes. The voltage
probe description of inelastic scattering resorts to the addition of one or more fictitious
reservoirs and leads attached to the coherent conductor under study through specific
scattering matrices, around the regions where inelastic scattering is to be modeled.
While being still coherent overall, the elimination of the fictitious reservoirs results in
an effective description of transport such that electrons that originally scattered into
the reservoirs now appear as having lost phase and energy memory completely.

We will now discuss the implementation of the voltage probe in the presence
of charge relaxation and general incoming states. The whole idea of the voltage
probe is to use the non-interacting scattering formalism to model inelastic electron
scattering, and the crossover from coherent conductors to incoherent ones. There
are two ways to do this. The simpler one assumes a static chemical potential in
the probes that is computed self-consistently by fixing time-averaged current flowing
into the probes to zero, as corresponds to an infinite impedance voltage probe, or
to inelastic scattering. This gives a physically sound conductance value, but fails to
yield reasonable shot noise predictions. The reason is that total current throughout
the system should be instantaneously conserved. The more elaborate way, therefore,
assumes fluctuations in the state of the probe that can compensate the current flowing
into the probe(s) at any instant of time (and possibly also energy if one is modeling
pure elastic dephasing [89, 90, 236]), which gives results for current fluctuations in
agreement with classical arguments [95].

It is traditional to impose such constraint within a Langevin description of current
fluctuations [88], whereby the chemical potential in the probe is allowed to fluctuate,
but the intrinsically semiclassical formulation of this approach makes it inadequate
to treat the statistics of general incoming entangled states that exhibit non-classical
correlations. There seems to be no known way of how to include interference con-
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tributions due to coherent superposition of current states, which are precisely the
contributions we are interested in this work. The discussion to follow (and the im-
plicit sequential scattering approximation) explicitly takes into account the precise
incoming entangled state, and recovers results obtained within the Langevin approach
in the case of non-entangled incoming states (see e.g. Appendix D.2).

The scattering matrix to a (two-legged) fictitious probe is given, in the bases
1, 2, 1′, 2′ (being 1′, 2′ the extra leads), by

Sα =




0 −√1− α i
√

α 0√
1− α 0 0 i

√
α

i
√

α 0 0
√

1− α
0 i

√
α −√1− α 0


 , (D.1)

with α being the inelastic scattering probability. This should be composed together
with any other scattering matrices in the system, and any other probes present. In
a spinful case in which inelastic scattering does not flip spin there should be at least
two of these probes, one per spin channel. Other considerations such as inelastic
channel mixing in multichannel cases should be taken into account when designing
the relevant fictitious probe setup. Let us first consider a general setup with a single
probe for simplicity.

We will now introduce the implementation of charge conservation through the
system (i.e. in the fictitious probe) which will lead to the simple result expressed in
Eq. (D.16). We first make the essential approximation that the inelastic scattering
time in the interacting region is much smaller than

∆t ≡ h/eV. (D.2)

The inverse of the timescale ∆t is the average rate at which the external leads inject
particles into the system, in the localized wave-packet terminology [237]. We will call
the scattering processes within time interval ∆t a ‘scattering event’. In this limit of
quick scattering we can assume sequential scattering events, as if each ∆t interval
was an independent few-particle scattering problem, one for each time

tj ≡ j∆t. (D.3)

The overlap of the wave-packets which would in principle give contributions away
from the sequential scattering approximation is assumed to have a negligible effect
in the long time limit. Other works in different contexts [238] seem to support this
statement. Furthermore, if one considers small transparency contacts between the
electron source and the fictitious probes, the sequential scattering approximation is
also exact.

The incoming state in each scattering event will be one particle in each channel
of the external leads (L1 and L2 in the setup of Fig. 5.1), plus a certain state in the
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probe’s leads 1′ and 2′. This state injected from the probe is prepared in a way so
as to compensate for excess charge scattered into the fictitious probe in all previous
events, with the intention of canceling any current that has flowed into the probe in
the past. The book-keeping of the probe’s excess charge is done via an auxiliary slave
degree of freedom |Q〉 with discrete quantum numbers Q = 0,±1,±2, . . . that count
charge transferred to the probe. The incoming state in leads 1′ and 2′ injected by
the probe into the system is a function of Q. The time evolution of the slave state
|Q〉 is constrained so that Q always equals the total number of electrons that has
entered the probe since the first scattering event. In particular, the time evolution
of |Q〉 during one scattering event ∆t is taken to follow the resulting net charge that
was transferred to the probe during that event. This scheme effectively correlates
the initially uncorrelated scattering events in order to satisfy instantaneous current
conservation through the system, where by instantaneous we mean at times larger
than ∆t but still much smaller than the measuring time.

If the incoming state in the probe’s leads is chosen correctly, the number of Q states
between which |Q〉 will fluctuate during many scattering events will be bounded, and
will be independent of the total number of events

M = eV t/h (D.4)

in the total experiment time t. This is the underlying principle of this approach,
which will guarantee that the instantaneous charge fluctuations in the probe will be
bounded to a few electrons throughout the whole measurement process, i.e., the probe
current will be zero and noiseless at frequencies below eV/~.

The choice that minimizes the charge fluctuations in a single channel two-legged
probe in the absence of superconductors in the system is the following: if Q at the
beginning of the scattering event is 1 or 2, the probe will emit two particles, one
through each ’leg’, thereby losing a maximum of 2 and a minimum of 0 in that event;
if Q is 0, −1 or −2 the probe will not emit any particle, thereby absorbing a maximum
of 2 and a minimum of 0. The resulting fluctuations of Q are bounded in the [−2, 2]
range. In some cases, such as the system discussed in the main text, this range is
reduced to [−1, 1] since the entangler only emits one electron of each spin in each
scattering event, so that the probe will never absorb 2 particles, but a maximum of
1. The relevance of this discussion will be apparent in connection with Eq. (D.11),
since it will determine the dimensions of the W operator therein.

D.1 Sequential scattering scheme for the FCS

We wish to compute in a general case the characteristic function

χ(~λ; M) = 〈ei
P

n λn∆N̂n〉 = Tr
{

χ̂(~λ)ρ(t)
}

(D.5)
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after a total measuring time interval t. Number difference ∆N̂n ≡ N̂out
n − N̂ in

n is
defined as the number operator in channel n at time t (scattered outgoing particle
number) minus the number operator at time zero, before any scattering (incoming
particle number). Differentiating log χ respect to the counting fields λn one obtains
the different transferred charge and current cumulants, Eq. (D.18).

Let us include the fictitious probe and expand our Fock space with the slave degree
of freedom |Q〉. We take the density matrix of the whole system at time zero equal to
ρ(0) = ρQ(0)⊗ρe(0), the second ρ being the electronic density matrix. As we will see
we do not need to specify the initial state of the slave degree of freedom ρQ(0) since
it will not affect our results in the long time limit. The density matrix is factorized
in the localized wave-packet basis [237],

ρ(0) = ρQ(0)⊗
⊗∏
j

ρe
j , (D.6)

with the electronic part being ρe
j ≡ ρr

j ⊗ρp
j . Each of these ρe

j constitutes the incoming
state in each of the j scattering events corresponding to the time interval [tj, tj+1].
ρr

j , which is actually j-independent, is the density matrix of the (uncorrelated in
time) electrons coming from the external reservoirs, and ρp

j is the density matrix of
the (correlated in time-through-Q) electrons coming from the fictitious probe. As we
mentioned, this matrix ρp

j will depend on the state of the slave degree of freedom Q
at the beginning of each scattering event j.

The time evolution from 0 to t, ρ(t) = Ûtρ(0)Û+
t is split up in the M time

intervals of length ∆t. The sequential scattering approximation amounts to assuming
that in each event each electron group ρe

j scatters completely before the next one

does. Therefore Ût = ÛM
∆t. We defer the discussion on how U∆t operates precisely to

a little later.
Since operator χ̂(~λ) will factorize into contributions for each scattering event,

χ̂ =
∏

j χ̂j, we can rewrite equation (D.5) as

χ = TrQ {TrM [χ̂MU∆tρ
e
MTrM−1 [ · · · (D.7)

· · · Tr1

[
χ̂1U∆tρ

e
1ρ

Q(0)U+
∆t

]
U+

∆t

]
U+

∆t · · ·
]}

,

where Trj stands for the trace over the ρe
j electron states and TrQ over the Q subspace.

An alternative way of writing this is by induction. Defining an auxiliary operator
Φ̂(k) =

∑
QQ′ |Q〉Φ(k)

QQ′〈Q′| such that

Φ̂(j) = Trj

[
χ̂jU∆tρ

e
jΦ̂

(j−1)U+
∆t

]
, (D.8)

Φ̂(0) = ρQ(0), (D.9)

one can see that (D.7) and (D.5) are equivalent to

χ(~λ; M) = TrQΦ̂(M). (D.10)
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After some algebra, Eq. (D.8) can be recast into the following sum over the total
range of Q values,

Φ
(j)

QbQ
′
b
=

∑

QaQ′a

W
QaQ′a
QbQ

′
b
Φ

(j−1)
QaQ′a

, (D.11)

with the W superoperator

W
QaQ′a
QbQ

′
b
(~λ) = Trj

[
PQ′bQb

χ̂j(~λ)U∆tρ
e
jPQaQ′aU

+
∆t

]
, (D.12)

and PQQ′ ≡ |Q〉〈Q′| the generalized projector within the slave degree of freedom
space. We will specify how it operates in practice a bit later, after Eq. (D.14).

Some words about the meaning of this operator W , which is a central object in
this technique, are in order at this point. It is a superoperator that, for ~λ = 0 simply
transforms the reduced density matrix ρQ(tj) = Φ̂(j)(~λ = 0) of the slave degree of

freedom at time tj to the subsequent one Φ̂(j+1)(~λ = 0) at time tj+1. In Eq. (D.8) we

see how Φ̂(j) is simply Φ̂(j−1) to which the incoming state ρe
j for event j is added, is

allowed to evolve a time ∆t (during which also ρQ evolves as dictated by the number
of electrons scattered into the probe), and the scattered electrons are traced out. The
result is the new evolved reduced density matrix for the slave degree of freedom. For
finite ~λ, the corresponding counting fields for the scattered electrons are also included
into Φ̂(j) so as to be able to recover the desired cumulants of the traced-out electrons
after time t from χ = TrQΦ̂(M). This can be also seen as supplementing the dynamics
of the system with a quantum field term ∝ λn in the action, in the generalized Keldysh
language of Ref. [239].

By assuming without loss of generality a diagonal initial ρQ(0) and by noting that
by construction states with different Q are orthogonal, we can in general take W to

be diagonal W
QaQ′a
QbQ

′
b

= δQaQ′aδQbQ
′
b
WQbQa , and Φ

(j)
QQ′ = δQQ′Φ

(j)
Q . Physically this means

that sequentially taking out of the system the scattered electrons (tracing them out)
forbids the Q counter to remain in a coherent superposition, since the electron that
generated it has been ‘measured’. Therefore (D.10) finally becomes

χ(~λ; M) =
∑
QaQb

W
M

QbQa
ρQ

QaQa
(0) (D.13)

(note the M th power of the W matrix). The following alternative and useful form
for (D.12) can be obtained by writing |Q〉〈Q|ρe

j |Q〉〈Q| = |φeQ〉〈φeQ|, in the case of a
pure incoming state in the external leads,

WQbQa(~λ) = 〈φeQa|U+
∆tPQbQb

χ̂j(~λ)U∆t|φeQa〉, (D.14)

where |φeQ〉 stands now for the incoming electronic state (through all leads) that
corresponds to a given value Q of the slave degree of freedom.
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Let us analyze the action of the evolution operator U∆t in the above equation.
Since we assume that particles scatter fully in time ∆t, the action of U∆t on the elec-
trons is written in terms of the global scattering matrix b+

n = U∆ta
+
n U+

∆t =
∑

m Snma+
m,

where a+
n are the electron creation operators in the different leads (including fictitious

ones) of the system 1. The effect of U∆t on the Q̂ degree of freedom is merely to up-
date it with the net number of electrons scattered into the fictitious leads, fixing
Q̂tj+1

− Q̂tj = ∆N̂p, where ∆N̂p is the number of electrons absorbed by the probe in
the event. This implies that PQbQb

in Eq. (D.14), which projects on the subspace with
Q = Qb, can be substituted by the electron-only operator that projects over scattered
electronic states that satisfy N̂out

p = N̂ in
p +Qb−Qa, where N̂out

p is the number operator

for fermions scattered into the probe, N̂ in
p is the number of electrons incident from the

probe into the system at the beginning of the scattering event, and Qa is the value of
Q also at the beginning of the scattering event.

As anticipated just before the beginning of this subsection, the value of N̂ in
p on

|φeQa〉 is a function of Qb, and should be chosen properly so as to compensate for
a given excess probe charge Qa at the beginning of a given scattering event. That
way the fluctuations of the probe’s excess charge Q will be minimum, although the
precise choice does not affect the result as long as the resulting range of fluctuations
of Q does not scale with measurement time t. As already discussed, for most cases
the optimum choice is N in

p (Q) = g(Q), with

g(1) = 2 (one electron in each lead of the probe),

g(0) = g(−1) = 0, (D.15)

which gives Q ∈ [−1, 1], and a 3× 3 W matrix.

To finish with the discussion of Eq. (D.14), recall that χ̂j = ei
P

n λn(N̂out
n −N̂ in

n ) and
that a useful relation for the case of a single channel mode n in which the eigenvalues
of N̂n are zero and one is eiλnN̂n = 1 + (eiλn − 1)N̂n.

The whole Levitov-Lee-Lesovik formulation of FCS [201] is well defined only in
the long time limit. In such limit it is clear that expression (D.14) is dominated by
the biggest eigenvalues µmax of W . All of its eigenvalues satisfy |µ| ≤ 1 for real values

of ~λ, so that those that are not close to 1 for small values of ~λ (around which we take
derivatives to compute cumulants) will exponentiate to zero when M → ∞. In all
cases we examined only one eigenvalue µmax would not exponentiate to zero, although
it can have finite degeneracy. In general, we have the following asymptotic property,
valid for any degeneracy of µmax,

log
[
χ(~λ; M)

]
= M log [µmax] +O(1). (D.16)

1Note the difference with the notation in [95]. When there is time reversal symmetry both choices
are equivalent.
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We can define a new generating function

log χI(~λ) = lim
M→∞

log χ(~λ; M)

M
. (D.17)

It can be shown that this function generates the zero frequency limit of current
cumulants

〈〈In(ω = 0)k〉〉 =
ek+1|V |

h
(−i)k ∂k

λn
log χI

∣∣
~λ=0

, (D.18)

being e here the electron charge and k the order of the cumulant, k = 1 for the
average current, k = 2 for the shot noise, and so on.

We can identify

χI(~λ) = µmax(~λ). (D.19)

This is our final result. µmax is the eigenvalue of Eq. (D.14) that equals 1 when all
counting fields λn are taken to zero.

The generalization to multiple probes is very straightforward. Given the optimum
choice of Eq. (D.15), the solution of an N−probe setup will involve the diagonaliza-

tion of an 3N ×3N W matrix similar to Eq. (D.14) where Q is changed to ~Q, a vector
of the N corresponding slave degrees of freedom. On the other hand, to implement
charge conservation in probes with more than one channel per leg (or more than
two legs), such as non-spin-conserving probes, the formalism would require a slightly
different expression for Eq. (D.15) and a consequently bigger dimension for W , but
would otherwise remain quite the same.

We have successfully compared the present method to Langevin techniques in sce-
narios where the latter is applicable, obtaining identical results in all cases. Some
simple examples are the FCS of a single channel wire with contact transmissions T1

(see Appendix D.2 for a detailed calculation), the case of a Mach-Zehnder interfer-
ometer or an NS junction, for which both this and the Langevin method [88] yield
identical results for χI .

D.2 Comparison of the method to previous tech-

niques

In this section we will show with a simple example how the proposed method
yields identical results to the ones obtained with previous Langevin technique, which
we generalize here to yield the FCS, instead of current cumulants. The purpose of
this section is twofold. First we wish to make a convincing case that our method
actually recovers known results, and secondly, that it indeed yields the FCS in the
presence of an inelastic probe, and not merely a dephasing probe as could be thought
from the unusual real time sequential scattering picture.
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We will do our comparison in the possibly simplest system one can think of,
a zero-temperature single channel conductor for spinless fermions. We will assume
symmetric contacts to the (real) reservoirs with transmission T1. A fictitious inelastic
probe will be connected between the two contacts with transmission probability α,
and scattering matrix (D.1).

As discussed in detail in Ref. [95], within the Langevin approach, the current
fluctuations in the presence of the probe should be corrected by the feedback due
to the instantaneous fluctuations of the probes voltage, which react to cancel any
current flowing into the probe. Thus the current fluctuation flowing into the right
reservoir reads

∆I2 = δI2 − T2p

T1p + T2p

(δIp1 + δIp2) , (D.20)

where δIn correspond to the current fluctuations in channel n with a static potential
in the probe (being p1 and p2 its two legs), and Tnm are the transmission probabilities
between channel n and m. Note that we have used the short notation: T1p = T1p1+T1p2

and T2p = T2p1 + T2p2 . The static potential in the probe for δIn is chosen so as to
cancel any average current into the probe.

In our case, left-right symmetry implies

∆I2 = δI2 − 1

2
(δIp1 + δIp2) . (D.21)

At this point, what one usually finds in the literature is a calculation of cumulants
of certain order. It is possible however to compute them all at once and recover the
FCS, as we show in the following. Define the characteristic function with a static
potential µp = eV/2 in the probe and with two counting fields, one (λ2) that counts
particles flowing into the rightmost reservoir, and another (λp) that counts particles
injected from the probe into the system.

χ(λ2, λp) = 〈eiλ2∆N2−iλp(∆Np1+∆Np2)〉. (D.22)

Since at this point there are still no probe fluctuations (each energy is independent
from the rest), one can write χ(λ2, λp) as the product of two characteristic functions,
one for particles in the interval [0, µp] and another in the [µp, eV ] [201]. We have

χ(λ2, λp) = 〈1|χ̂2(λ2)χ̂p1(−λp)χ̂p2(−λp)|1〉M/2

〈0|χ̂2(λ2)χ̂p1(−λp)χ̂p2(−λp)|0〉M/2, (D.23)

where χ̂n(λ) ≡ 1 +
(
eiλn − 1

)
N̂n, |1〉 is the state at an energy below µp (i.e., with a

full state coming from the probe), and |0〉 is a state above µp (empty probe). Working
out the algebra we get for the current characteristic function, Eq. (D.17),

χI(λ2, λp) =
{[

1 + (eiλ2 − 1)T12 + (eiλ2+iλp − 1)T2p

]

× [
1 + (eiλ2 − 1)T12 + (e−iλp − 1)T2p

]} 1
2 ,
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where T12 = T 2
1 (1− α)/[2− α− T1(1− α)]2 and T2p = T1α/[2− α− T1(1− α)].

To include the self-consistent voltage fluctuations of the probe, we return to Eq.
(D.21). It is easy to see that the function

χI(λ2) ≡ χI(λ2,−λ2

2
) = 1 + (eiλ2 − 1)T12 + (eiλ2/2 − 1)T2p (D.24)

generates the cumulants of ∆I2, instead of δI2, and therefore is the proper FCS
solution of the Langevin approach.

On the other hand, the method we have developed involves, in this simple system
and for the same choice of g(Q) as in Eq. (D.15), the following expression of the W
matrix in (D.14)

W =




a 0 0
c a b
0 c a


 , (D.25)

with a = 1 + (eiλ2 − 1)T12 − T2p, b = eiλ2T2p and c = T2p. The highest eigenvalue of

this matrix is a +
√

bc, which indeed equals the Langevin result (D.24).
To conclude, let us emphasize that although the generalized Langevin approach

we have employed in this comparison is probably more convenient in this basic case,
there seems to be no known way to apply it to systems in which the incoming state is
non-locally entangled. Note also that this example clarifies the fact that the fictitious
probe we are describing within our approach is inelastic since, as is evident within
the Langevin approach, a particle scattered into the probe at a certain energy can
abandon it at any other energy in the interval [0, eV ]. In particular, note that the the
current through the system when T1 = 1 and α = 1 is noiseless, i.e., the Fano factor
as derived from Eq. (D.24) is F = 0, as opposed to F = 1/4 that would result from
the quasi-elastic probe [95].



Appendix E

Anexo en castellano

Incluimos a continuación una traducción al castellano de la introducción y de las
conclusiones de cada caṕıtulo, lo cual constituye el resumen global de este trabajo,
como parte de los requisitos de presentación de tesis doctorales de la Universidad
Autónoma de Madrid.

E.1 Introducción

En mecánica cuántica existe un fenómeno sin análogo clásico en virtud del cual
un sistema puede existir simultáneamente en una superposición de diversos estados
distintos. En particular, dos o más objetos cuánticos pueden estar en un tipo especial
de superposición tal que el estado del sistema global no pueda describirse como un
producto de los estados de los diferentes componentes, incluso cuando los objetos
estén espacialmente separados. Se dice entonces que estos objetos están mutuamente
enredados [1, 2]. Por ejemplo, es posible preparar dos part́ıculas con spin 1/2 en un
estado cuántico puro llamado singlete tal que si al medir el spin de una de ellas se la
encuentra en un estado de spin-arriba, la otra resultará estar en estado spin-abajo si
es medida a continuación, y viceversa. Como resultado, las medidas realizadas sobre
una de las part́ıculas parecen influir instantáneamente sobre la otra part́ıcula con la
que está enredada, sin importar lo lejos que se encuentren una de otra. Esta “mis-
teriosa acción a distancia”, como la denominó Albert Einstein, está en contradicción
con el principio intuitivamente obvio del realismo local, que afirma que los objetos
f́ısicos sufrirán la influencia únicamente de su entorno más inmediato, y de que de-
berán poseer sus propiedades de manera objetiva antes de que éstas sean observadas.
Schrödinger acuñó el término “enredo” para describir esta peculiar conexión entre es-
tados cuánticos en 1935 [3]. Desde entonces este concepto ha engendrado algunas de
las preguntas más entretenidas y filosóficamente turbadoras sobre la interpretación de
la mecánica cuántica, y permanece en el núcleo de la extrañeza del mundo cuántico.

Pero la relevancia del enredo no es meramente conceptual. Desde los años 80 en

135
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adelante, los cient́ıficos empezaron a pensar en las correlaciones no locales de estados
cuánticos enredados como un recurso f́ısico (igual que la enerǵıa) que podŕıa abrir la
puerta a la resolución de problemas intratables dentro de la computación clásica de
una manera eficiente, como por ejemplo la factorización de números enteros grandes o
la simulación de la dinámica de sistemas cuánticos. Hab́ıa surgido el nuevo campo de
la Información Cuántica (QI), al que se dedicó gran interés desde diferentes sectores de
la f́ısica, como la óptica cuántica, la f́ısica nuclear o la f́ısica de la materia condensada.

Hoy en d́ıa existen ya varias propuestas para construir algunos de los componentes
básicos del hardware de un ordenador cuántico, como son los bits cuánticos o qubits,
que son bits de información que pueden existir en un estado cualquiera de un sistema
cuántico de dos niveles. Estos pares de estados pueden ser las dos polarizaciones de
un fotón en una cavidad cuántica, el estado con un spin nuclear de más sobre el de
otro estado en una muestra ĺıquida dentro de un dispositivo de resonancia nuclear, el
estado fundamental y primer excitado de un átomo en una trampa de iones lineal o
el spin-arriba y abajo de un electrón confinado en un punto cuántico, por mencionar
sólo unos pocos.

Uno de los requisitos para construir un ordenador cuántico es que el sistema
elegido pueda ser escalado hasta contener un gran número de qubits. En este sentido,
las arquitecturas para computación cuántica basadas en qubits de estado sólido son
muy prometedoras. En particular, el uso del spin electrónico como qubit dentro de
semiconductores se presenta como una opción conveniente, ya que se ha demostrado
experimentalmente la existencia de largos tiempos de vida media del spin electrónico
en estos sistemas, del orden de 100 nanosegundos [4, 5]. Esto implica que el trans-
porte de spin puede permanecer coherente durante largas distancias dentro de los
semiconductores. Se han observado además tiempos de coherencia incluso mayores
en electrones confinados en puntos cuánticos semiconductores [6, 7].

Existe otra importante tarea para la computación cuántica, que pertenece al
campo de la comunicación cuántica, que es la de transmitir qubits entre lugares
distantes de manera fiel. Un modo de lograr esto es implementando los llamados
qubits volantes, que son qubits que pueden ser convenientemente transportados de un
lugar a otro [8]. En principio, el candidato natural para dichos qubits volantes es
el fotón, con sus dos estados de polarización. Pero para evitar el problema de tener
que convertir la información cuántica del spin a la luz y viveversa en un potencial
ordenador cuántico basado en el spin, seŕıa muy deseable poder implementar qubits
volantes directamente mediante electrones móviles. Por este motivo, desde 1999 un
gran volumen de propuestas teóricas sobre cómo construir un enredador, i.e., una
fuente de pares de part́ıculas enredadas de manera no local, ha aparecido dentro de la
comunidad de f́ısica del estado sólido, propuestas principalmente concentradas en el
grado de libertad de spin del electrón. Es éste exactamente el campo del conocimiento
donde encaja la presente tesis.

En resumen, la motivación fundamental de esta tesis ha sido la de compren-
der diversas propiedades del enredo de spin electrónico en nanoestructuras. Es-
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pećıficamente, hemos estudiado algunos aspectos de las siguientes tres importantes
preguntas:

• ¿Cómo generar estados con enredo no local de spin en dispositivos de estado
sólido?

• ¿Cómo describir su evolución sometida a decoherencia dentro de la nanoestruc-
tura?

• ¿Cómo detectar el enredo?

Para ahondar en la descripción del contenido de esta tesis es conveniente, llegado
este punto, dar una serie de definiciones de algunos conceptos básicos en el campo
de la teoŕıa de QI. Dedicamos a ello la siguiente sección. Algunos de dichos con-
ceptos provienen principalmente de un campo diferente del tratado en este trabajo,
y no constituyen el núcleo ni el objetivo de esta tesis. Son simplemente útiles para
establecer un lenguaje común y para ofrecer al lector lego un espectro más amplio
del tipo de marco conceptual al que nuestro trabajo pertenece. Un lector ya familiar-
izado con términos como qubit, estado EPR, desigualdad de Bell, etc., puede saltar
directamente a la Sec. 1.2, donde describimos en más detalle cuáles son los prob-
lemas espećıficos que hemos estudiado. Además de los problemas motivados por la
comunicación cuántica, la dinámica del enredo electrónico ha dado lugar al estudio
de otra serie de problemas interesantes dentro del campo de la materia condensada,
a los que hacemos referencia en la Sec. 1.3. Concluimos esta introducción con la Sec.
1.4, donde describimos la estructura de esta memoria de tesis.

E.2 Algunos conceptos básicos de la teoŕıa de In-

formación Cuántica

En esta sección presentaremos algo del trasfondo histórico y algunas definiciones
del campo de la QI. Esto no pretende ser una lista exhaustiva ni una descripción formal
de los diferentes temas, sino un modesto resumen de los conceptos fundamentales que
pueden ayudar al lector lego a hacerse una idea de la motivación y el argot de esta
tesis. La mayor parte de las definiciones han sido tomadas de la Enciclopedia de
Filosof́ıa de Stanford, y de Wikipedia (la enciclopedia libre de Internet), en algunos
casos de forma literal.

E.2.1 La paradoja Einstein-Podolsky-Rosen

La mecánica cuántica es probablemente una de las teoŕıas más bellas y exper-
imentalmente exitosas de la historia de la Ciencia, pero también una de las más
antintuitivas y desconcertantes para el razonamiento humano, ya que parece violar
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algunos de los principios fundamentales de la f́ısica clásica a los que estamos tan
acostumbrados. Al final de los años 20 un grupo de f́ısicos, que inclúıa a N. Bohr,
W. Heisenberg y M. Born, hizo una propuesta sobre cómo interpretar el formalismo
matemático de la mecánica cuántica basada en su estudio de la f́ısica de los átomos.
Algunos de los conceptos que barajaron fueron que la función de onda no debe ser
interpretada como un objeto real, sino como una herramienta matemática cuyo único
significado f́ısico es el de que nos permite calcular probabilidades para las medidas.
Además, los resultados de las medidas son probabiĺısticos no porque reflejen nuestro
conocimiento limitado de algunas propiedades de los sistemas cuánticos, sino porque
la naturaleza de la medida es indeterminista de forma fundamental. También dis-
cutieron el problema de la medida, afirmando que el acto de medir causa un “colapso
de la función de onda” inmediato. Este primer intento general de formular la cor-
recta interpretación de la mecánica cuántica seŕıa conocido como la interpretación de
Copenhagen [9–11].

En la mecánica clásica el estado de un sistema puede ser descrito especificando
un conjunto de parámetros, como por ejemplo la posición y el momento de todas
las part́ıculas que forman el sistema. La evolución de este sistema se puede calcular
de acuerdo con ciertas leyes deterministas, de tal manera que es posible conocer el
valor de todos esos parámetros en un tiempo futuro, y por tanto caracterizar las
propiedades del sistema completamente. Pauli denominó a esta manera de describir
un sistema la idealización del “observador separado”. En el marco de la interpretación
de Copenhagen tal descripción no es posible en el caso de sistemas cuánticos. En su
lugar, el estado cuántico debe ser descrito teniendo en cuenta no sólo las propiedades
del sistema, sino también la presencia o acción que ejerce un observador sobre él, y
los resultados de lo que ha sido observado en el pasado [11].

En 1935 A. Einstein, que rechazaba la interpretación ortodoxa de Copenhagen de
la mecánica cuántica, publicó un art́ıculo junto con sus dos estudiantes postdoctor-
ales B. Podolsky y N. Rosen, titulado “Puede Considerarse Completa una Descripción
Mecano-Cuántica de la Realidad F́ısica?” [12]. En la versión moderna de este exper-
imento mental, dos observadores, denominados habitualmente en nuestros d́ıas como
Alice y Bob (o A y B), realizaban medidas independientes de spin sobre un par de
electrones en un estado singlete de spin. Según su razonamiento, una vez hubiera me-
dido Alice su spin en cierta dirección, la medida que pudiese realizar Bob en el suyo
en la misma dirección quedaba determinada con certeza, mientras que justo antes
de la medida de Alice el resultado de Bob sólo estaba determinado estad́ısticamente.
Por tanto, o bien los efectos de la medida podŕıan viajar de Alice a Bob de manera
instantánea, o bien la descripción mecano-cuántica de dichos spines era una carac-
terización incompleta de los mismos. Para evitar “efectos a distancia” no locales e
instantáneos, concluyeron que debeŕıan existir en la naturaleza ciertos parámetros mi-
croscópicos no incluidos en la teoŕıa que causaŕıan correlaciones entre las part́ıculas.
A estos parámetros extra se los llaman en ocasiones parámetros ocultos o variables
ocultas (aunque ellos no usaron esta terminoloǵıa). Rápidamente su art́ıculo se con-
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virtió en una pieza central en el debate sobre la interpretación de la teoŕıa cuántica,
y seŕıa conocido como la paradoja Einstein-Podolsky-Rosen (EPR) [13].

E.2.2 Desigualdades de Bell

Después de la aparición del art́ıculo EPR la credibilidad de la mecánica cuántica
quedó en una posición delicada, pues parećıa que o bien era incompleta en el sentido
de que no pod́ıa describir algunos elementos de la realidad f́ısica, o que violaba el
principio de la velocidad de propagación finita de efectos f́ısicos. En aquel momento
la mayoŕıa de los f́ısicos atribuyeron las caracteŕısticas desconcertantes del enredo
cuántico al inapropiado punto de vista de “observador separado” de Einstein, y de-
jaron la cuestión de lado. Esto fue desafortunado, pues el estudio del enredo fue
ignorado durante treinta años, hasta que aparecieron las reconsideraciones y exten-
siones del argumento EPR por parte de Bell en 1964 [14].

Bell volvió a abrir el debate sobre los cimientos de la mecánica cuántica exami-
nando el problema del enredo en sistemas más simples que el caso EPR: él consideró
correlaciones entre cantidades observables bivaluadas, como la polarización o el spin,
de dos sistemas separados en un estado enredado. Derivó una desigualdad basada
en las suposiciones de Einstein de “localidad” y “realismo”, que expresó en términos
de probabilidades de distribución conjuntas de los resultados de medidas realizadas
simultáneamente en las dos partes separadas del sistema enredado. Estas medidas se
repet́ıan para diversas orientaciones de los aparatos de medida (por ejemplo, distin-
tos ángulos de los polarizadores). De esta forma, Bell mostró que las correlaciones
estad́ısticas cuánticas entre probabilidades en direcciones de los detectores distintas
conllevan a la violación de la desigualdad. Esto puede ser resumido en el aśı lla-
mado teorema de Bell: “Ninguna teoŕıa f́ısica local de variables ocultas puede jamás
reproducir todas las predicciones de la mecánica cuántica”. La desigualdad de Bell
es por lo tanto una herramienta o ‘test’ para distinguir entre correlaciones clásicas
y correlaciones cuánticas a través de la comparación de correlaciones en direcciones
distintas [15].

Los experimentos del ‘test’ de Bell hasta la fecha han mostrado que, de hecho, las
desigualdades de Bell se violan. Esto proporciona evidencia experimental contra el
realismo local y prueba la validez de la mecánica cuántica. Además, el principio de
relatividad especial queda a salvo porque, aunque las dos part́ıculas enredadas parecen
estar interaccionando a través de un intervalo espacio-tiempo, no viaja información
útil entre ellas, aśı que la causalidad no puede ser violada a través del enredo. La razón
por la que es imposible que Alice pase información a Bob (o viceversa) más rápido
de la velocidad de la luz tiene que ver con el teorema de no clonación, formulado por
Wootters, Zurek y Dieks en 1982. Este teorema prohibe la creación de copias idénticas
de un estado arbitrario “desconocido” sin perturbarlo. Si Alice y Bob comparten un
estado enredado y fuera posible que Bob clonase su qubit varias veces, entonces Alice
podŕıa enviar bits de información de la siguiente forma. Si Alice quisiera enviar un
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“1”, mediŕıa su part́ıcula en la dirección z, colapsando de este modo el estado de Bob
a spin arriba o spin abajo. Si quisiera enviar un “0”, dejaŕıa su part́ıcula sin tocar.
Por su lado, Bob creaŕıa múltiples copias de su qubit y mediŕıa el spin de cada una de
las copias en la dirección z. Si todas sus medidas dieran el mismo resultado, él sabŕıa
de forma segura que Alice hab́ıa medido su spin, obteniendo el bit de información “1”.
Si la mitad de las veces midiera spin arriba y la otra mitad spin abajo, Alice le habŕıa
enviado un “0”. Pero el hecho es que, debido a la existencia del teorema de clonación,
la inspección estad́ıstica de los estados cuánticos enredados es imposible [2, 16].

E.2.3 Información cuántica

El estudio general de las capacidades de proceso de información de los sistemas
cuánticos es el tema de la teoŕıa de QI [17]. Por definición, la información cuántica es
información que hay almacenada en el estado de un sistema cuántico. Dos sistemas
cuánticos en un estado enredado pueden ser utilizados como un canal de información
cuántica para realizar tareas que son imposibles clásicamente. Por ejemplo, si Alice
y Bob comparten dos part́ıculas, que llamamos I (a la de Alice) y II (a la de Bob),
en un estado máximamente enredado, Alice podrá transferir el estado exacto de una
tercera part́ıcula en su poder, digamos, por ejemplo, un átomo en un estado complejo
que ella desconoce, a la part́ıcula II de Bob, que está a una distancia arbitrariamente
lejana. Para conseguirlo Alice tiene que realizar una medida de Bell sobre el átomo
que desea “teleportar” y su part́ıcula I del par enredado. Tras hacer esta medida el
átomo habrá perdido su estado inicial, pero la información de dicho estado no habrá
sido destruida, sino que habrá sido transmitida a la part́ıcula II en virtud de su enredo
inicial, aunque no de forma completa. Para completar el proceso Alice tendrá que
comunicarle a Bob el resultado de su medida de manera clásica (por ejemplo mediante
una llamada de teléfono), para que Bob pueda realizar una operación unitaria sobre
su part́ıcula. Hecho esto obtendrá el estado deseado. Este fenómeno es conocido como
teleportación cuántica [18]. En 1993 C. H. Bennett et al. propusieron un método que
podŕıa en principio usarse para teleportar un objeto [19]. Este método fue verificado
experimentalmente por D. Bouwmeester et al. en 1997 usando fotones [20]. También
es posible usar pares enredados en criptograf́ıa cuántica, donde el enredo se utiliza
para transmitir señales que son imposibles de espiar sin dejar trazas.

La información cuántica difiere de la clásica en diversos aspectos. Por ejemplo, no
puede ser léıda ni duplicada sin provocar perturbaciones (teorema de no-clonación).
Es más, dado que un sistema puede estar en una superposición de varios estados
simultáneos, es posible procesar información cuántica de forma “paralela”, i.e., de
manera exponencialmente más eficiente que la información clásica. Esto permite re-
alizar algunas tareas dif́ıciles de manera “eficiente”, esto es, en un tiempo que crece
polinómicamente con el tamaño del problema. Por el contrario, estas tareas seŕıan
ineficientes en un contexto clásico, por requerir un tiempo de cálculo que creceŕıa expo-
nencialmente con la complejidad del problema. Por otro lado, la información cuántica
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no puede ser recuperada completamente mediante medidas de qubits o cualquier otro
método. Por tanto, este paralelismo masivo de la computación cuántica sólo puede ser
explotado mediante el uso de algoritmos inteligentes, adaptados a las peculiaridades
de las leyes cuánticas.

La información cuántica, y los cambios en la información cuántica, pueden ser
cuantificados mediante un análogo cuántico de la entroṕıa clásica de Shannon, que es
la entroṕıa de Von Neumann [17].

E.2.4 Qubit and ebit

La unidad básica de información cuántica es el bit cuántico o qubit, que representa
la cantidad de información que puede almacenarse en un sistema cuántico de dos
niveles. El término se debe a Schumacher (1995) [21]. El espacio de estados de un sólo
qubit puede representarse geométricamente mediante la superficie bidimensional de
una esfera. Esto significa básicamente que el qubit tiene dos grados de libertad locales.
De manera equivalente un registro de n qubits habita un espacio que tiene (más o
menos) 2n grados de libertad continuos. Por el contrario, el espacio de configuraciones
de un registro clásico análogo es estrictamente discreto, y por tanto infinitamente más
pequeño.

En el estado de un solo qubit se puede codificar una cantidad arbitrariamente
grande de información clásica. Esta información puede ser procesada y comunicada
pero, por las peculiaridades de la medida cuántica, el volumen de información que
puede ser recuperado de un sólo qubit es igual a un bit. Es en el procesado de la
información (computación cuántica) donde reside la diferencia.

Una caracteŕıstica importante que distingue a un qubit de un bit clásico es que
múltiples qubits pueden exhibir enredo cuántico. Se dice que dos qubits en dos puntos
espaciales separados A y B están enredados cuando su estado no puede ser preparado
como un estado producto del qubit en A y del qubit en B mediante operaciones locales
en cada qubit y comunicación clásica de bits de información entre ellos. Dos qubits
en un estado máximamente enredado se conocen como un bit enredado, o ebit. Los
cuatro estados enredados básicos puros que forman la base de Bell son:

|ΨBell1〉 =
1√
2

(| ↑〉A| ↓〉B − | ↓〉A| ↑〉B) , (E.1)

|ΨBell2〉 =
1√
2

(| ↑〉A| ↓〉B + | ↓〉A| ↑〉B) , (E.2)

|ΨBell3〉 =
1√
2

(| ↑〉A| ↑〉B − | ↓〉A| ↓〉B) , (E.3)

|ΨBell4〉 =
1√
2

(| ↑〉A| ↑〉B + | ↓〉A| ↓〉B) , (E.4)

donde las flechas ↑, ↓ representan, por ejemplo, el estado de spin arriba y el estado
de spin abajo de un electrón. Un ebit también es la cantidad de información que
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necesitaremos intercambiar entre dos qubits en A y B para colocarlos en un estado
enredado.

El enredo es un ingrediente necesario de cualquier ordenador cuántico que no
puede ser simulado eficientemente en un ordenador clásico. Una posible explicación
del poder de la computación cuántica es que, mediante el enredo, el estado total de un
ordenador cuántico mientras realiza una operación es una superposición de múltiples
operaciones clásicas, todas ellas desarrollándose de manera simultánea.

E.2.5 Ordenadores cuánticos

Un ordenador cuántico (OC) [1, 22] es cualquier dispositivo f́ısico que hace uso
directo del enredo para realizar operaciones sobre datos. Por esta propiedad, los
OC prometen un gran incremento en la eficiencia para resolver algunos problemas
respecto de las posibilidades de ordenadores clásicos. Uno de estos problemas es la
factorización de números enteros. Si un número consta de n bits (tiene n d́ıgitos
en su representación binaria), entonces un ordenador cuántico con poco más de 2n
qubits puede usar el algoritmo de Shor (1994) para descomponerlo en números primos.
Otro problema similar es el de los logaritmos discretos. Esta habilidad propia de los
OC permitiŕıa le decodificación de muchos de los sistemas criptográficos actualmente
en uso, en el sentido de que existiŕıa un algoritmo relativamente rápido (tiempo
polinómico en n) para resolver tal problema. Otro problema interesante que sólo se
podŕıa resolver con un OC fue propuesto por Richard Feynman en 1982 [23]. Es el
de la simulación de la dinámica de sistemas cuánticos. Actualmente solo se sabe de
la dramática ventaja de los OC en estos tres problemas: factorización, logaritmos
discretos, y la simulación de sistemas cuánticos. Aún aśı, no existe demostración de
que la ventaja sea real: todav́ıa es posible que se pueda descubrir un algoritmo clásico
igualmente rápido, aunque se considera poco probable. Existe un problema más donde
un OC tiene una ventaja (cuadrática) más pequeña, aunque aún significativa. Es el
de búsquedas cuánticas en bases de datos, y puede resolverse mediante el algoritmo de
Grover. En este caso la ventaja es demostrable. Esto establece más allá de toda duda
que un ordenador cuántico (ideal) seŕıa potencialmente superior a los ordenadores
clásicos [22].

Uno de los mayores desaf́ıos actualmente es el de implementar los elementos com-
putacionales cuánticos básicos en un sistema f́ısico y demostrar que pueden ser con-
trolados de manera fiable y escalable. Ya se han realizado experimentos en los que
se ejecutaron operaciones computacionales cuánticas con un número muy pequeño de
qubits. En particular, en 2001 I. L. Chuang y su grupo realizaron el más complejo
cálculo cuántico del mundo hasta la fecha, la factorización del número 15 usando el
algoritmo de Shor en un ordenador cuántico de 7 qubits [24].
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Cómo funciona un ordenador cuántico

Un ordenador clásico tiene una memoria hecha de bits, donde cada bit contiene
un uno o un cero. Este dispositivo calcula manipulando estos bits, esto es, trans-
portándolos de la memoria a puertas lógicas y viceversa. Por “puertas” se entiende
un conjunto de transformaciones que constituyen el cálculo. La misma filosof́ıa se
aplica a un OC, pero con ciertas diferencias. En primer lugar, el OC contiene un
conjunto de qubits. Como ya hemos mencionado, un qubit albergará un uno, un
cero o una superposición cualquiera de ellos. Por tanto si tenemos en memoria un
registro de n qubits, el estado total del OC es una superposición de hasta 2n esta-
dos, cada uno de ellos clásicamente equivalente una sola ristra de n 1’s y 0’s. Igual
que antes, un OC calcula mediante la manipulación de estos qubits, pero ahora los
transporta de la memoria a puertas lógicas cuánticas y viceversa. Las puertas lógicas
cuánticas actúan sobre los qubits mediante la aplicación de transformaciones unitarias
(reversibles). Además trabajan con superposiciones, de manera que pueden realizar
múltiples operaciones lógicas a la vez. Por motivos prácticos es conveniente elegir con-
juntos de puertas cuánticas universales. Éstas son grupos de puertas con las cuales se
puede realizar cualquier operación, o al menos aproximarla con tanta precisión como
se desee. Un conjunto tal nos permitiŕıa realizar operaciones arbitrarias sin tener
que inventar un nuevo tipo de puerta cada vez. Puede demostrarse que todas las
operaciones cuánticas unitarias sobre un registro de n-qubits que uno pueda imaginar
pueden implementarse mediante combinaciones de una puerta unitaria sobre qubits
individuales (rotación) y una puerta de dos bits de negación condicionada C-NOT. El
concepto de un ordenador cuántico universal fue propuesto por primera vez en 1985
por D. Deutsch. Otra importante diferencia respecto de un ordenador clásico es que
los cálculos cuánticos son probabiĺısticos. En un OC, al final del cálculo se realiza
una medida sobre el registro de n-qubits. Por las leyes de la mecánica cuántica, esta
medida resultará en una secuencia aleatoria de n-bits, y además destruirá el estado
almacenado. Para poder utilizar un OC para hallar la solución de cierto cálculo, el
diseño del algoritmo tiene que ser tal que la distribución de probabilidad de las medi-
das esté picada en torno a la solución correcta. Por tanto, para obtener la solución a
un problema, en general uno tiene que repetir el cálculo varias veces y elegir el valor
que resulte con mayor probabilidad.

Requisitos de un ordenador cuántico

Existen ciertos requerimientos para una implementación exitosa de un OC. D.
DiVincenzo hizo una lista con los siguientes requisitos para un OC práctico [22,26]:

• los qubits deben poder inicializarse a valores arbitrarios,

• las puertas lógicas deben operar más rápido que el tiempo de decoherencia,

• debe existir un conjunto universal de puertas lógicas,
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• los qubits deben poder leerse fácilmente, y

• debe ser escalable, esto es, debe poderse agrandar el sistema hasta contener
n-qubits sin dejar de cumplir los requisitos anteriores

Aparte de estos cinco criterios para un OC, existen dos criterios de conectividad en
red de OCs, que son dos “desiderata” necesarias para realizar tareas de comunicación
cuántica [8]. Éstas son:

• la habilidad de convertir qubits estacionarios en qubits volantes y al revés, y

• la habilidad de transmitir fielmente qubits volantes entre lugares espećıficos.

Propuestas para ordenadores cuánticos

Desde distintos campos de investigación se han propuesto diferentes tipos de dis-
positivos para ser usados como el hardware de un OC. A continuación se mencionan
algunos de ellos:

• OC de iones atrapados → La primera propuesta de usar estos sistemas vino de
manos de J. I Cirac y P. Zoller en 1995 [27]. Los iones, o part́ıculas atómicas
cargadas, pueden confinarse y suspenderse en el espacio libre usando campos
electromagnéticos. Se dice entonces que los iones quedan atrapados en una es-
pecie de “trampa” magnética. Los qubits se almacenan en estados electrónicos
estables de cada ion, y la información cuántica se puede procesar y transferir
mediante el movimiento cuantizado colectivo de los iones en la trampa (que
interaccionan mediante la fuerza de Coulomb). Se aplican láseres para inducir
acoplos entre los estados de un qubit (para realizar operaciones a un solo qubit),
o para inducir acoplos entre los estados internos de un qubit y los estados de
movimiento externos (para crear enredo entre qubits). Las operaciones funda-
mentales de un OC ya se han demostrado experimentalmente con alta precisión
en sistemas de iones atrapados, y se ha desarrollado una estrategia para escalar
el sistema a un número arbitrariamente grande de qubits mediante el transporte
rápido de iones dentro de una matriz de trampas de iones. Aún aśı, los orde-
nadores basados en estos sistemas tienen su velocidad limitada por la frecuencia
de vibración de los modos de la trampa.

• OC basados en electrodinámica cuántica de cavidades→ Para realizar un OC de
este tipo se necesita una interacción coherente entre un qubit material (tal como
un átomo atrapado o un punto cuántico semiconductor) y el campo cuantizado
(normalmente de un solo fotón) de un resonador óptico o de microondas. Para
alcanzar una dinámica coherente con un solo fotón y un átomo se emplea una
cavidad pequeña, con pérdidas extremadamente bajas, que permita incrementar
el campo eléctrico por fotón de manera que la frecuencia de Rabi coherente de la
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interacción átomo-campo sea más rápida que la tasa de emisión espontánea del
átomo y la tasa de decaimiento del campo en la cavidad. La primera propuesta
de este tipo la realizó P. Domokos et al. en 1995 en la que se empleaban átomos
de Rydberg en cavidades de ondas milimétricas superconductoras [28].

• OC basados en resonancia magnética nuclear (RMN) de moléculas en disolución
→ Los spines nucleares de moléculas en disolución pueden servir como qubits.
Estos spines pueden interaccionar entre śı, programarse mediante pulsos de
radiofrecuencia y detectarse mediante instrumentos de RMN similares a los
habitualmente empleados en hospitales y laboratorios qúımicos. La primera
propuesta de este tipo de sistemas vino de A. Gershenfeld y I. L. Chuang en 1997
[29]. Como resultado de diversos experimentos notables, la RMN se ha alzado
como el componente más popular de la arquitectura de hardware cuántico. Sin
embargo, los dispositivos de RMN sufren de una atenuación exponencial de la
señal sobre ruido según crece el número de qubits del sistema.

• OC basados en superconductores (bien sea en carga o en flujo) → Las im-
plementaciones de estado sólido de un OC seŕıan un logro muy deseable, en
particular en sistemas electrónicos nanométricos, ya que se podŕıan fácilmente
integrar en circuitos electrónicos y aśı escalarlos hasta alcanzar el gran número
de qubits necesarios para cálculos útiles. Entre las primeras propuestas de com-
putación cuántica en estado sólido se encuentra la de qubits basados en uniones
Josephson, propuesta por A. Shnirman, G. Schön y Z. Hermon en 1997 [30–32].
En esta propuesta existen dos clases de dispositivos, uno de ellos basado en el
grado de libertad de la carga y el otro en el de fase (flujo). Las operaciones
cuánticas de uno o dos qubits pueden controlarse mediante potenciales de puerta
en un caso y mediante campos magnéticos en el otro. Ambos tipos de dispos-
itivos pueden fabricarse con la tecnoloǵıa existente. Existen dos problemas
fundamentales que deben resolverse para que estos dispositivos puedan usarse
para procesar información cuántica, el tiempo de decoherencia y la medida del
estado final del sistema [31,32].

• OC basados en el spin electrónico en puntos cuánticos → En 1998 D. Loss y D.
P. DiVincenzo abrieron el campo de la computación cuántica basada en spines
con la propuesta de usar como qubit el spin de un electrón atrapado en un
punto cuántico [8, 33]. Para implementar las puertas lógicas de dos qubits esta
propuesta se basa en la interacción de Coulomb que existe entre estos qubits
de spin ya que, además de spin, poseen carga. El mayor problema de esta
propuesta es la decoherencia de este tipo de qubits debido a interacciones con
el entorno.

• OC ópticos → Una de las primeras propuestas para computación cuántica se
basó en la utilización de los modos ópticos de un fotón para implementar un
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qubit. El atractivo de esta propuesta radica en la facilidad con que es posible
observar la interferencia de fotones. Pero la necesidad de interacción qubit-
qubit para realizar puertas lógicas a dos qubits supone un gran desaf́ıo ya que
los fotones no interacccionan directamente; medios ópticos no lineales pueden
hacer de mediadores de la interacción fotón-fotón, pero resulta técnicamente
dif́ıcil conseguir que estos materiales operen con la suficiente intensidad. Sin
embrago, E. Knill et al. demostraron en 2001 que era posible construir un orde-
nador cuántico eficiente mediante óptica lineal, usando sólo divisores de haces,
desfasadores, fuentes de fotones individuales y fotodetectores. Este método em-
plea la retroalimentación de los fotodetectores, y es robusto contra errores por
pérdida de fotones e ineficiencias de los detectores [34]. Aún aśı, por el mo-
mento los ordenadores de fotones libres son sólo casi determińısticos (es decir,
las puertas lógicas operan con menos de un 100% de éxito).

• OC de electrones libres→ Las interacciones qubit-qubit son, en principio, un in-
grediente crucial para la computación cuántica. La mayor parte de las propues-
tas y experimentos se apoyan en interacciones controladas qubit-qubit para im-
plementar puertas lógicas universales de dos qubits. Sin embargo, Beenakker et
al. [35] demostraron en 2004 que, con la utilización de medidas proyectivas junto
con rotaciones de spines individuales sobre qubits electrónicos volantes, se puede
alcanzar una computación cuántica eficiente y determinista. De esta forma no
se requiere interacciones qubit-qubit, y se consigue computación cuántica medi-
ante electrones libres. Para salvar cierto teorema que parećıa prohibir la com-
putación cuántica eficiente con electrones libres, estos autores aprovecharon el
hecho de que las medidas de carga no afectan al qubit de spin. Sin embargo,
esta propuesta, que incluye divisores de haces que polarizan el spin, no está aún
al alcance de la tecnoloǵıa experimental actual.

E.2.6 Decoherencia

Para que funcione un OC es necesario que las operaciones que realizan las puertas
lógicas durante cada cálculo sean unitarias, es decir, reversibles. Por otro lado, los
estados que se usan habitualmente como input de estas puertas deben llegar a ellas de
manera efectiva en una superposición de estados concreta o en un estado enredado.
Sin embargo, en el mundo real hay interacciones que destruyen el estado coherente en
que deben permanecer los componentes de un OC para realizar dichas operaciones.
En general, es muy dif́ıcil aislar estos dispositivos de las fuentes de decoherencia
extŕınsecas e intŕınsecas, y por el momento los OC sólo han logrado resolver problemas
triviales. Los tiempos de decoherencia para los sistemas t́ıpicos propuestos como
candidatos a la computación cuántica van desde los nanosegundos a los segundos.
Es necesario para que un cálculo termine con éxito que el tiempo necesario para
realizarlo sea mucho menor que el tiempo de decoherencia, al menos si no se recurre



Appendix E: Anexo en castellano 147

a la corrección cuántica de errores. La tasa de error se define precisamente como la
razón del tiempo de operación sobre el tiempo de decoherencia. Si la tasa de error
es suficientemente baja, es posible usar corrección cuántica de errores, que corrige
errores debidos a la decoherencia. Una cifra muy citada (aunque algo arbitraria)
para la tasa de error máxima en cada puerta es 10−4. Esto implica que cada puerta
debe poder realizar su operación 10000 más rápido que el tiempo de decoherencia del
sistema [22].

E.3 Los problemas tratados en esta tesis

Como ya he hemos mencionado al principio de esta introducción, en los últimos
siete años ha habido una actividad frenética dentro del campo de los qubits volantes
en estado sólido. El estudio de la creación y medida de part́ıculas enredadas no
localmente ha atráıdo el interés de los f́ısicos por su potencial uso en tareas de comu-
nicación cuántica, como teleportación cuántica o criptograf́ıa cuántica. Además, ya
existe una propuesta en la literatura [35] para construir un ordenador cuántico con
qubits volantes mediante usando electrones libres. Aqúı describiremos nuestra con-
tribución al campo junto con algunas propuestas previas que han motivado nuestro
trabajo y nuevas ideas de otros grupos.

E.3.1 Generación de enredo no local en dispositivos de es-
tado sólido

Un enredador es un dispositivo que funciona como una fuente de estados enredados
de forma no local. Recientemente ha habido un gran número de propuestas para
construir dicho dispositivo en un medio de estado solido:

Una posibilidad es usar un superconductor convencional como una fuente natural
de pares de electrones con enredo de spin que pueden ser inyectados en metales
normales o ferromagnéticos [36–57]. Para obtener la separación espacial necesaria
de los dos electrones al extraerlos del superconductor se han propuestos diversos
mecanismos, como filtros de enerǵıa y de spin [41,46,49], puntos cuánticos dobles [38,
49,53], el uso de ĺıquidos de Luttinger como terminales [45,47] o el bloqueo de Coulomb
de terminales de resistencia finita [50]. El mecanismo que nosotros proponemos, como
mostraremos más adelante, es un filtro angular [54].

Aparte del uso de superconductores, se han propuesto muchos otros mecanismos
para generar estos pares EPR: mediante el uso de impurezas magnéticas [58], a través
de un punto cuántico [59], mediante biexcitones en puntos cuánticos dobles [60], us-
ando puntos triples [61], mediante la utilización de puntos cuánticos caóticos [62],
a través de la dispersión Coulomb entre electrones en un gas bidimensional [63] o
entre qubits estáticos y volantes en un nanotubo de carbono [64, 65], usando pul-
sos de voltaje [66], mediante osciladores nano-mecánicos [67] o por combamiento de
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nanobarras [68].

Existe un grupo dentro del conjunto de mecanismos para generar pares de qubits
enredados que no requiere de interacciones (en los mecanismos recién expuestos hab́ıa
siempre algún tipo de interacción electrón-electrón, como el apareamiento mediado
por fonones en el superconductor, o la interacción de Coulomb en el punto cuántico,
etc.). En ausencia de interacciones sigue siendo posible enredar el grado de libertad de
spin [69–71], o el orbital [62,72–74]. Véase la Ref. [75] para una recopilación reciente
de los trabajos sobre enredo de electrones y huecos libre de interacciones.

Como explicamos a continuación, en esta tesis nosotros nos hemos concentrado
en el estudio de superconductores como fuentes de pares enredados. En nuestro caso
el grado de libertad que se enreda es el spin. El enredo de spin es mucho menos
sensible a la decoherencia que el enredo orbital, sencillamente porque la gran mayoŕıa
de grados de libertad ambientales se acoplan al grado de libertad orbital en lugar de
al spin.

Nuestras propuestas

Hemos estudiado dos tipos de enredadores en los que la fuente de pares enredados
no localmente es un superconductor convencional BCS.

En el primer trabajo [51], que se describe en detalle en el Caṕıtulo 2, nos motivó el
art́ıculo de 2001 de Recher, Sukhorukov y Loss [38]. En él investigamos teóricamente
la emisión simultánea de dos electrones desde un superconductor tridimensional (3D)
a dos metales normales diferentes a bajas temperaturas y voltajes (a este proceso se
le suele llamar “reflexión Andreev cruzada”). Estos electrones, que forman un par de
Cooper dentro del superconductor, pierden las correlaciones superconductoras cuando
saltan a los metales normales (ignoramos el efecto de proximidad), pero el enredo de
singlete de spin entre ellos permanece cuando alcanzan los dos cables metálicos sep-
arados, constituyendo aśı un ebit de información. Para describir la corriente túnel a
través de una interfaz de tamaño finito como es la formada entre el superconductor
3D y los contactos distantes conectados al mismo, obtuvimos un Hamiltoniano de
túnel local que depende de las derivadas normales de los campos electrónicos en cada
electrodo (en lugar del habitualmente usado pero erróneo que es proporcional a los
campos). Hallamos que, como función de la distancia r entre los contactos, la corriente
enredada se ve truncada por un decaimiento exponencial con la longitud de coheren-
cia del superconductor [38], y adicionalmente modulada por un prefactor geométrico
(∼ 1/r4) que hace que la probabilidad de extraer pares enredados decaiga muy rápido
a escalas de la longitud de onda de Fermi. Por tanto, en este trabajo concluimos que
el requisito de separación f́ısica entre los contactos con el superconductor supone una
limitación severa en la práctica. Hacemos notar que, si los elementos de matriz de
túnel se toman independientes del momento [38], entonces el factor geométrico decae
más indulgentemente con la distancia (∼ 1/r2). Ha habido algunas ideas en la lit-
eratura tratando de mejorar este prefactor de decaimiento. Dentro del contexto de
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modelos de túnel independientes del momento, la ley de potencias cambia si el super-
conductor tiene baja dimensionalidad (d) [45, 49], o si es difusivo [48, 52], resultando
en un prefactor r−d+1 y r−1, respectivamente. Resta por indagar cómo cambia este
comportamiento cuando se usan elementos de matriz de túnel más realistas.

Para superar las dificultades causadas por la necesidad de emitir el par de elec-
trones enredados desde puntos distantes, proponemos un montaje experimental dis-
tinto [54], analizado en detalle en el Caṕıtulo 3, en el que el emisor es de nuevo un
superconductor BCS. La idea detrás de esta propuesta es la transmitir los electrones
a través de la misma región espacial pero induciéndolos a abandonarla en direcciones
distintas. Para logarlo proponemos el uso de resonancias normales y Andreev en es-
tructuras normal-superconductor. Los niveles resonantes se ajustan para transmitir
selectivamente electrones con valores espećıficos del momento perpendicular a la in-
terfaz, fijando de esta manera el ángulo de salida. Cuando el metal normal es un gas
electrónico bidimensional (2DEG) baĺıstico, el mecanismo propuesto garantiza una
separación espacial arbitraria de los haces de electrones emitidos desde una interfaz
finita. Realizamos un estudio cuantitativo de las propiedades de transporte lineal y
no lineal en algunas estructuras convenientes, teniendo en cuenta la gran diferencia
de masas efectivas y longitudes de onda de Fermi entre ambos metales. Estimaciones
numéricas confirman la viabilidad del método de separación de haces que proponemos.
Más aún, el tipo de estructuras necesarias para este tipo de dispositivo parecen al
alcance de las posibilidades experimentales actuales [76,77].

E.3.2 Evolución de estados enredados en nanoestructuras:
decoherencia

En sistemas reales los electrones están irremediablemente acoplados a grados de
libertad ambientales. Como resultado surge el ‘dephasing’, o pérdida de memoria de
fase (término que usaremos normalmente si se conserva la enerǵıa), o la decoherencia
(en general), por las cuales se reduce y finalmente se destruye el enredo. Es importante
entender las consecuencias de este fenómeno.

En el caso de enredo de spin, la interacción de spin-órbita y la interacción hiper-
fina con spines nucleares resultan ser mecanismos efectivos de ‘dephasing’ y rela-
jación. Véase la Ref. [8] para encontrar una recopilación sobre decoherencia de
spines electrónicos atrapados en puntos cuánticos en el contexto de la propuesta
Loss-DiVincenzo [33].

En el caso de enredo orbital, las fluctuaciones electromagnéticas causadas por otras
cargas inducen decoherencia (o ‘dephasing’ si las flutuaciones son suficientemente
lentas). Se han desarrollado diversos métodos fenomenológicos para tratar sus efectos
en el transporte a través de conductores mesoscópicos. En la Refs. [73, 74, 78, 79]
se simuló el efecto del ‘dephasing’ introduciendo en la matriz densidad del estado
enredado un parámetro fenomenológico que suprimı́a sus elementos no diagonales.
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En las Refs. [72, 80] el ‘dephasing’ se introdujo mediante un promedio sobre una
distribución uniforme de factores de fase aleatorios acumulados en cada canal de
borde en una barra Hall cuántica. En las Refs. [81, 82], que de hecho describen
exactamente la radiación fuera del equilibrio que actúa sobre el sistema, el ‘dephasing’
era inducido por un potencial clásico fluctuante. En la Ref. [83] el ‘dephasing’ se trató
como fluctuaciones aleatorias de la fase de modos propagantes a través del conductor.
Estos dos últimos métodos se han aplicado recientemente a la estad́ıstica completa
de conteo (FCS) en las Refs. [84, 85].

También es posible tratar la decoherencia de forma fenomenológica como efecto
de la presencia de reservas adicionales ficticias o sondas de voltaje conectadas al
conductor mesoscópico considerado. Este método, que simula el efecto de procesos
inelásticos, fue introducido por Büttiker hace veinte años [86,87]. La ventaja de este
modelo reside en el hecho de que los procesos inelásticos de aleatorización de fase
se implementan en un marco de dispersión elástica independiente del tiempo. Ideal-
mente, una sonda de voltaje es un terminal con flujo neto de corriente nulo, es decir,
cualquier electrón que abandona el conductor a través de la sonda se termaliza por
disipación e inmediatamente se devuelve al conductor. Las primeras teoŕıas [87] us-
aron esta sonda de voltaje disipativa como un medio simple para analizar la transición
entre conducción cuántica coherente y el ĺımite clásico de adición de resistencias en
serie. Más tarde, se generalizó para incluir conservación instantánea de corriente [88].
Se descubrió que, teóricamente, la disipación en una sonda se puede suprimir im-
poniendo que cada electrón que salga de la sonda sea reemplazado por un electrón
incidente desde la sonda a la misma enerǵıa [89, 90]. Una sonda de ‘dephasing’ tal
puede servir como un modelo simple para describir el ‘dephasing’ en procesos de
conducción mesoscópica. Por otro lado, es un buen modelo para una sonda real
de voltaje con impedancia infinita, un componente habitual en muchos dispositivos
mesoscópicos.

Las sondas de voltaje y de ‘dephasing’ también juegan un importante papel en la
investigación del ruido y las correlaciones de corriente en conductores mesoscópicos
[85,88–94]. La validez del modelo se ha discutido extensamente (véase Ref. [95] para
una recopilación), encontrando en general un buen acuerdo cualitativo con modelos
microscópicos [96–99] y experimentos [100,101], aunque en ciertos sistemas falle a un
nivel cuantitativo [82]. Recientemente se demostró que esta aproximación se volv́ıa
equivalente a técnicas de promediado de fase a nivel de la FCS en ciertos ĺımites y
sistemas [102]. Por otro lado, últimamente se ha usado para modelar dispersión con
volteo de spin y decoherencia en puntos cuánticos caóticos [103,104].

En cualquier caso, el problema de cómo aplicar tal modelo de decoherencia al caso
especialmente interesante de corrientes de entrada enredadas de manera no local no
ha sido discutido previamente hasta donde hemos podido comprobar. Es esto lo que
nosotros hemos hecho [93,94] y lo que resumimos a continuación.
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Modelo fenomenológico para dispersión inelástica

En la Ref. [93] hemos tratado el efecto de la dispersión inelástica, producida
por la presencia de reservas ficticias adicionales [86, 87], sobre un par de estados
electrónicos enredados y sus consecuencias en relación con la detección del enredo.
Hemos parametrizado la decoherencia mediante una probabilidad de dispersión inelástica
α que afecta tanto al grado de libertad de spin como al de enerǵıa. Sin embargo, en
este trabajo, presentado en el Caṕıtulo 4, no consideramos conservación instantánea
de la corriente que entra y sale de la reserva externa, sino que sencillamente fijamos
su promedio a cero. En este sentido no estamos considerando una sonda de voltaje
verdadera, ya que por definición debeŕıa tener una impedancia infinita, y por tanto
una corriente neta instantáneamente nula.

Hemos resuelto este problema en la Ref. [94], donde desarrollamos una modifi-
cación del modelo de sonda ficticia que lo generaliza para incluir conservación in-
stantánea de corriente en presencia de estados entrantes con enredo arbitrario. Nues-
tra generalización está diseñada con el objetivo de calcular la FCS de un conductor
mesoscópico genérico y, mediante el uso de una sonda de voltaje distinta para cada
valor del spin, conservamos el spin pero no la enerǵıa tras la dispersión. Se describe en
detalle este problema en el Caṕıtulo 5. Añadiremos en cualquier caso aqúı que, en nue-
stro método, hay impĺıcita una aproximación de dispersión secuencial. Si quisiéramos
describir sólo ‘dephasing’, es decir, pérdida de memoria de fase sin intercambio de
enerǵıa, entonces el problema seŕıa de dispersión elástica y las diferentes enerǵıas se
desacoplaŕıan, pudiendo tratar cada enerǵıa por separado. Pero en presencia de dis-
persión inelástica esto ya no es posible. Para tratar este problema, en lugar de una
representación de enerǵıas, lo que hicemos es emplear la representación de paquetes
de onda en la cual los electrones llegan localizados a la sonda de voltaje en tiempos
fijos. En este lenguaje, un electrón que en ausencia de dispersión inelástica llegaŕıa
a un detector en un tiempo τi, en presencia de dispersión inelástica se retrasa y llega
en un tiempo posterior τi + δt, lo cual es equivalente a una relajación de enerǵıa. Por
otro lado, en nuestra aproximación ignoramos el solape de los paquetes de onda, es
decir, dividimos el tiempo en intervalos de duración ∆t de tal modo que cada grupo
de part́ıculas se dispersan completamente a través del sistema antes de que llegue el
siguiente. Sugerimos que las contribuciones debidas al solape son despreciables en el
ĺımite de tiempos de medida largos. No demostramos esta afirmación, sólo la justifi-
camos obteniendo con nuestro método en una serie de sistemas sin enredo incidente
las mismas expresiones anaĺıticas para la corriente y todos sus cumulantes (para la
función caracteŕıstica) que las que se obtienen mediante un tratamiento semiclásico
tipo Langevin. La dispersión inelástica se implementa en nuestro modelo a través de
la memoria de cada evento que queda almacenada en un contador cuántico Q que
incluimos en la sonda de voltaje, y que simula la relajación de carga. Funciona de
tal modo que tiende a contrarrestar el exceso o déficit de carga que adquirió la sonda
durante el evento anterior. De este modo, el contador correlaciona un intervalo de
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tiempo ∆t con el siguiente, y aśı sucesivamente. Con este modelo tratamos de de-
scribir la dispersión inelástica inducida sobre los electrones por un baño disipativo
externo (no por la interacción electrón-electrón).

E.3.3 Detección del enredo

Aparte del tema de su generación, otro punto crucial es el de la detección del
enredo. Mediante el uso de un divisor de haces, el enredo se puede detectar analizando
cantidades como el ruido de la corriente [105–107] o cumulantes de mayor orden (FCS)
[94,108]. Más aún, la presencia de enredo puede detectarse analizando desigualdades
de Bell y cantidades como la concurrencia [109], que se han expresado en términos
de ruido a frecuencia cero de corrientes de spin y de carga [41,46,72,73,110–112]. La
violación de una desigualdad de Bell implica que existen correlaciones cuánticas entre
las part́ıculas detectadas que no pueden ser descritas por ninguna teoŕıa de variables
ocultas. Con el mismo esṕıritu que ha sido hecho con el ruido, en la Ref. [113] se
derivó una desigualdad de Clauser-Horne (CH) 1 [115,116] para la FCS.

Desigualdad de Clauser-Horne y ruido de disparo en un divisor de haz

En las Refs. [93,117] analizamos el efecto de la decoherencia en la violación de la
desigualdad de CH, cuando ésta es expresada en términos de la FCS, en un conductor
mesoscópico multiterminal. El sistema consiste en un enredador, que asumimos dado,
que emite un flujo de electrones enredados en dos conductores caracterizados por
una matriz de dispersión y sometidos a decoherencia (tal y como se describe en el
apartado previo). Dado un cierto número promedio de electrones enredados emitidos,
evaluamos la desigualdad de CH en función del número de part́ıculas detectadas Q
y de diversos parámetros de la matriz de dispersión. Mostramos cómo, cuando se
conecta la decoherencia, la violación de la desigualdad de CH se ve reducida de
forma efectiva. Una peculiaridad interesante que hallamos es la de la existencia, para
ciertos parámetros del sistema, de una región protegida de valores de Q para los
que la violación sobrevive para decoherencia arbitrariamente intensa. Este trabajo se
presenta en el Caṕıtulo 4.

En el Caṕıtulo 5 presentamos los resultados de la Ref. [94], donde analizamos la
robustez del método de detección de enredo mediante un divisor de haces propuesto
en la Ref. [106], ante la presencia de dispersión inelástica que conserva el spin y de
una probabilidad finita de retroceso para varios estados entrantes con enredo no lo-
cal. Hallamos que, al diferencia del ‘dephasing’ elástico orbital [73], la acción de los
procesos inelásticos en el divisor de haces no puede ser despreciada, ya que afectan

1Dada la condición |x|, |x′|, |y|, |y′| ≤ 1, la llamada desigualdad CH (o CH74) se deriva a partir
de la desigualdad algebraica −1 ≤ xy − xy′ + x′y + x′y′ − x′ − y ≤ 0. En realidad, existe una
jerarqúıa infinita de tales desigualdades tipo Bell, que básicamente se clasifican especificando el tipo
de experimentos de correlación que involucran [114].
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fundamentalmente al mecanismo f́ısico del detector, que no es sino el hecho de que dos
electrones con los mismos números cuánticos no pueden acabar ocupando el mismo
canal cuántico (bloqueo de Pauli). Si la enerǵıa no se conserva, tal mecanismo de
antiaglomeración ya no es perfecto, y el método de detección de enredo debe ser re-
visado. Sin embargo, encontramos que la detección de enredo mediante medidas de
ruido de disparo sigue siendo posible incluso en condiciones muy laxas de imperfec-
ciones en el dispositivo divisor de haces y en presencia de una dispersión inelástica
considerable (hasta del 50%).

E.4 Otras motivaciones y contribuciones de esta

tesis

Junto con la motivación central de esta tesis, que es la de estudiar problemas de
comunicación cuántica en dispositivos de estado sólido, nos hemos enfrentado a otros
temas interesantes dentro del campo de la materia condensada. Damos aqúı un breve
resumen de otras contribuciones de esta tesis, y de otras herramientas que hemos
empleado:

• Probablemente la contribución técnica más relevante de esta tesis es la del estu-
dio que hemos realizado en el Caṕıtulo 2 de un Hamiltoniano local de túnel que
permite investigar problemas de transporte a través de interfaces de geometŕıa
arbitraria y perfiles de potenciales de barrera arbitrarios [51]. Demostramos
que, en heteroestructuras 3D o 2D, la dependencia bilineal con el momento de
los elementos de matriz de túnel a baja enerǵıa se traduce en un Hamiltoni-
ano en espacio real que queda expresado en términos de las derivadas normales
de los campos electrónicos en cada electrodo. También obtuvimos esta misma
forma usando una descripción de ‘tight-binding’. Mostramos además que, en
un metal baĺıstico, al ignorar la dependencia del efecto túnel con el momento se
incurre en una violación de la unitariedad que conlleva un ĺımite termodinámico
(de interfaz ancha) incorrecto, entre otras inconsistencias. Este Hamiltoniano
local ha sido recientemente empleado en otros problemas interesantes, como
el trabajo “Quantum charge fluctuations in a superconducting grain” por M.
Houzet, D. A. Pesin, A. V. Andreev y L. I. Glazman en 2005 [118], y en el
trabajo “Weak Localization in Metallic Granular Media” por Y. M. Blanter, V.
M. Vinokur y L.I. Glazman en 2005 [119].

• También en el Caṕıtulo 2 hemos estudiado la distribución angular de la corriente
electrónica que fluye través de interfaces túnel entre un metal normal y un metal
superconductor (NS) y entre dos metales normales (NN) cuando éstas poseen
una forma circular de radio finito. En el caso de la corriente Andreev a través de
un contacto NS, calculamos las correlaciones angulares entre haces de electrones
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enredados emitidos a través de la interfaz de tamaño finito y mostramos cómo
desaparecen según disminuye el radio de la interfaz.

• Hemos establecido rigurosamente la equivalencia entre la emisión de pares de
Cooper y la reflexión Andreev de un hueco incidente en una interfaz NS, ha-
ciendo notar que surgen de elecciones distintas del potencial qúımico respecto
del que se definen las cuasipart́ıculas en el metal normal, siendo µS en la imagen
Bogoliubov - de Gennes estándar, y µN en el escenario en el que se contempla
la emisión de dos electrones (Caṕıtulo 2).

• En el Caṕıtulo 3 hemos estudiado el transporte resonante a través de barreras
dobles en nanoestructuras supercondutor - semiconductor donde existe una gran
diferencia en las masas efectivas y longitudes de onda de Fermi en cada lado
de la interfaz. Encontramos picos a voltaje cero y voltaje finito en la conduc-
tancia diferencial vs. diferencia de voltaje que no son simétricos con respecto a
inversión del signo del voltaje.

• Hemos utilizado la FCS como la cantidad observable para comprobar la vio-
lación de la desigualdad de CH. En particular, hemos considerado la distribución
de probabilidad conjunta P (Q1, Q2) de transferir un número Q1 y un número
Q2 de cargas a dos terminales diferentes en un tiempo de observación t dado.
El conteo de electrones se modeló mediante contadores selectivos de spin, que
no son sino filtros de spin sin probabilidad de retroceso (Caṕıtulo 4).

• Siguiendo la idea de la Ref. [106], en el Caṕıtulo 5 hemos usado una rotación
local de spin en uno de los terminales de un un dispositivo divisor de haces
litografiado sobre un 2DEG. La rotación de spin se implementa mediante la
adición de puertas extensas de voltaje encima y debajo de una cierta sección
del terminal en cuestión. Aplicando un voltaje entre estas puertas se acentúa
la asimetŕıa de inversión estructural del 2DEG, induciendo un acoplo Rashba
spin-órbita en esa región del 2DEG de una manera controlable sin alterar la
concentración de electrones. Esto produce a su vez una precesión del spin
alrededor de un eje en el plano del 2DEG que es a su vez perpendicular al
momento del electrón, induciendo de esta manera una rotación del spin de un
ángulo dado tras atravesar la región con las puertas. Este mecanismo permite
distinguir entre diferentes estados enredados y polarizados estudiando cómo las
señales de ruido de disparo cambian con el ángulo de un comportamiento de
aglomeración a uno de antiaglomeración [106].

• También en el Caṕıtulo 5 hemos generalizado el modelo fenomenológico de sonda
de voltaje que simula la dispersión inelástica al caso del cálculo de la FCS de
part́ıculas con enredo no local que atraviesan un conductor mesoscópico.
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E.5 Estructura de esta memoria de tesis

Esta tesis está organizada de la siguiente manera: Contiene cuatro caṕıtulos, los
dos primeros, Caṕıtulos 2 y 3, están dedicados a intentar responder a la pregunta:
¿Cómo generar electrones con enredo de spin no local usando estructuras h́ıbridas
metal normal-superconductor? ; y los otros dos caṕıtulos, Caṕıtulos 4 and 5, a las
preguntas: ¿Cómo describir la evolución de los estados enredados no localmente en
presencia de dispersión inelástica?, y ¿Cómo detectar enredo no local y como discrim-
inar entre diferentes estados incidentes enredados y no enredados?. Cada caṕıtulo
contiene una sección introductoria autocontenida del problema espećıfico con el que
lidia (donde se dan muchas referencias a trabajos relacionados), contiene además
algunos resultados nuevos que nosotros hemos obtenido, y un resumen con las con-
clusiones fundamentales al final. Además, se incluye al final de cada caṕıtulo una
sección titulada “Experimentos relacionados”. Debido a la novedad de los proble-
mas considerados en esta tesis, el objetivo de nuestros estudios teóricos no ha sido
el de describir unos experimentos que ya exist́ıan; en todo caso, ha sido el de des-
pertar o disparar el interés de algunos grupos experimentales sobre la realización de
los dispositivos propuestos. Sin embargo, con el paso de los años han aparecido en
la literatura algunos experimentos relacionados con algunos de los problemas que
nosotros hemos tratado aqúı y que no están tan lejos de los dispositivos espećıficos
que nosotros hemos estudiado. Éste es por ejemplo el caso del trabajo “Experimen-
tal Observation of Bias-Dependent Nonlocal Andreev Reflection” por S. Russo, M.
Krough, T. M. Klapwijk y A. F. Morpurgo en 2005 [120], que describimos en el
Caṕıtulo 2, o el experimento “Shot-noise and conductance measurements of traspar-
ent superconductor/two-dimensional electron gas junctions”, por B.-R. Choi et al.
en 2005 [76], descrito en el Caṕıtulo 3. Otros experimentos son de relevancia para
nosotros simplemente porque confirman la accesibilidad experimental de algunas de
las cantidades que usamos en nuestra teoŕıa. Éste el el caso de la FCS para electrones
del Caṕıtulo 4, cuya medida experimental no está tan lejana de acuerdo con el trabajo
“Current measurement by real-time counting of single electrons” por J. Bylander, T.
Duty y P. Delsing en 2005 [121]. Finalmente, hemos trasladado a los apéndices al-
gunas de las discusiones y cálculos más largos que podŕıan haber distráıdo, de otra
forma, del discurso principal.

E.6 Conclusiones al caṕıtulo 2

Hemos investigado la corriente a través de una estructura túnel NS en la región
de parámetros kBT ¿ eV ¿ ∆ donde la reflexión Andreev es el canal transmisivo
dominante. Hemos establecido rigurosamente la equivalencia entre emisión de pares
de Cooper y reflexión Andreev de un hueco incidente. Para describir el túnel a través
de una interfaz de forma arbitraria, hemos derivado un Hamiltoniano de túnel local
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truncando apropiadamente el correspondiente a una interfaz infinita. Este esquema
a sido aplicado al estudio de transporte a través de una interfaz circular de radio
arbitrario y a una interfaz hecha de dos contactos pequeños. En el primer caso, las
correlaciones angulares entre los dos electrones emitidos han sido dilucidadas y se ha
mostrado cómo se pierden a medida que el radio de la interfaz disminuye. Hemos
investigado además cómo se recupera el ĺımite termodinámico, mostrando que, de-
bido a la interferencia destructiva entre los distintos puntos de salida, éste se alcanza
para radios del orden de unas pocas longitudes de onda de Fermi. En el caso de la
interfaz de dos puntos, hemos calculado la corriente enredada no local proviniente
de procesos en los que cada electrón sale del superconductor a través de un agu-
jero diferente. Hemos encontrado que, como función de la distancia entre los dos
contactos, dicha corriente enredada decae rápidamente en la escala de la longitud
de onda de Fermi. La interferencia entre los distintos canales de salida a dos elec-
trones ha sido también investigada y se ha mostrado que proporciona contribuciones
comparables a la corriente enredada no local. Si queremos obtener resultados f́ısicos
razonables en problemas tridimensionales que tengan que ver con el Hamiltoniano
de túnel local, como el ĺımite termodinámico, la preservación de la unitariedad, o la
dependencia con la distancia de la corriente enredada no local a través de una interfaz
de dos puntos, hemos encontrado que es necesario emplear elementos de matriz de
‘hopping’ (salto) que posean la dependencia correcta con el momento [cuya forma ha
sido también obtenida a través una descripción ‘tight-binding’ (de ligadura fuerte)].
Una virtud importante del método que hemos desarrollado aqúı es que permite el
estudio sistemático de emisión de pares de Cooper a través de interfaces de túnel ar-
bitrarias. Además, puede ser empleado como punto de partida para modelos teóricos
más sofisticados y realistas donde los metales que conecta estén en régimen difusivo
o existan interacciones de Coulomb, como sugieren experimentos relacionados.

E.7 Conclusiones al caṕıtulo 3

Hemos investigado teóricamente la posibilidad de crear estructuras resonantes NS
donde los dos electrones que formaban previamente un par de Cooper en el super-
conductor son enviados en direcciones diferentes en el metal normal. La idea central
se basa en el diseño de una estructura que es transparente sólo para electrones con
enerǵıa en la dirección perpendicular a la barrera dentro de la fina región de un
nivel resonante. Como la enerǵıa total se encuentra próxima al nivel de Fermi, dicho
filtrado de la enerǵıa perpendicular se traduce en selección del ángulo de salida.

Se sabe que los electrones dentro de un superconductor convencional están cor-
relacionados de tal forma que electrones moviéndose a igual velocidad en direcciones
opuestas tienden a tener spines opuestos. A bajas temperaturas y pequeños volta-
jes, el flujo de electrones desde el superconductor al metal normal está compuesto
completamente de pares de electrones correlacionados. Estos tienen tanto spin como
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momento pararelo a la interfaz opuestos, mientras que poseen la misma enerǵıa total.
Si el ángulo de salida se selecciona filtrando el momento perpendicular a la interfaz,
la corriente en el metal normal está formada por dos haces finos de electrones mutu-
amente enredados en forma de singlete. Estos haces apuntan en direcciones distintas
y se separan espacialmente uno de otro a distancias de la fuente mucho mayores que
la anchura de la misma.

El truco de la selección del ángulo de salida ha sido pensado para facilitar la obser-
vación del enredo no local entre haces de electrones, y este trabajo ha sido dedicado a
proponer una implementación concreta de esta idea. De todas formas, hacemos notar
que dicha selección de la dirección de salida puede que no sea totalmente necesaria.
Si nos contentamos con medir fluctuaciones anticorrelacionadas de spin de baja en-
erǵıa, puede que sea suficiente con emplazar dos detectores de spin de forma simétrica
con respecto a la perpendicular a la interfaz a una distancia suficientemente grande,
de forma similar al dispositivo de la Fig. 3.1(a), pero con una interfaz NS normal,
no con una doble barrera que selecciona el ángulo. Si su desplazamiento entre el
emisor y el detector es baĺıstico, los electrones que llegan a cada detector tienen,
en media, momento paralelo opuesto y spin opuesto (la anticorrelación angular ha
sido expĺıcitamente mostrada en la Ref. [51] para el caso de una interfaz perfecta y
extensa). Las fronteras del 2DEG pueden ser diseñadas para optimizar dichas cor-
relaciones. El resultado es que los electrones que llegan a cada detector exhibirán un
cierto grado de correlación de singlete de spin no local que puede ser medido.

En conjunto, concluimos que un gas de electrones bidimensional baĺıstico pro-
porciona un escenario ideal para investigar enredo no local entre electrones emitidos
desde una interfaz de tamaño finito con un superconductor a una cierta distancia.
Si la interfaz está formada por una estructura resonante que selecciona la enerǵıa
perpendicular y por lo tanto la magnitud del ángulo de salida, correlaciones de spin
no locales pueden ser claramente observadas si los haces salientes son dirigidos hacia
detectores convenientemente emplazados.

E.8 Conclusiones al caṕıtulo 4

En este caṕıtulo hemos estudiado el efecto de la decoherencia en la violación de la
desigualdad de CH (o CH74) cuando ésta es formulada en términos de la FCS [113].
El sistema bajo investigación (Fig. 4.1) consiste en un enredador ideal acoplado,
a través de un par de hilos metálicos mesoscópicos e idénticos, a unos contadores
selectivos de spin. Hemos asumido que la decoherencia, que ocurre de forma similar
pero independiente en ambos conductores, es producida por la presencia de reservas
ficticias adicionales, de acuerdo con el modelo fenomenológico de Büttiker [86,87]. La
decoherencia está parametrizada por una tasa α.

Como era de esperar, la decoherencia produce una supresión de la violación de la
desigualdad de CH. La magnitud de dicha supresión ha sido analizada como función
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de los parámetros que caracterizan el sistema, que son: la transmisión T de los hilos,
el ángulo entre los analizadores Θ, el número de pares enredados inyectados M y el
número de part́ıculas transmitidas Q1 y Q2 a los contadores. Primero hemos discutido
la suposición de no incremento, una condición que necesita ser satisfecha en ambos
hilos 1 y 2 para que la desigualdad de CH sea válida. Hemos encontrado que dicha
condición, en un hilo determinado, se verifica para todas las transmisiones T hasta un
cierto ĺımite máximo Tmax que depende de Q, M y, por supuesto, de α. En particular,
Tmax decrece con la tasa de decoherencia hasta un determinado valor de Q y, a partir
de ah́ı, se incrementa. Los resultados principales pueden ser resumidos de la siguiente
manera:

• La máxima violación, incluso en presencia de decohrencia, se da siempre para
el mayor valor de la transmisión permitido T = Tmax y para Q1 = Q2 (de hecho
desaparece rápidamente cuando Q1 6= Q2).

• Siempre y cuando T = Tmax, el intervalo de valores del ángulo entre analizadores
para los que existe violación no depende de la tasa de decoherencia, aunque la
magnitud de la violación disminuye con α.

• En ausencia de decoherencia se hab́ıa demostrado que el máximo de la violación
de la desigualdad de CH decáıa como 1/M [113]. Aqúı hemos encontrado que,
para valores finitos de α, el parámetro SCH decrece exponencialmente con

√
M ,

en concreto, como [f(α)]
√

M/M , i.e., decae con el aumento de ambos M y α.

• El valor de Q para el que ocurre máxima violación es prácticamente indepen-
diente de M , lo que significa que las violaciones más grandes aparecen para
números relativamente pequeños de las part́ıculas transmitidas, incluso para
tiempos de observación muy grandes.

• Es de interés resaltar que hemos encontrado la tasa de decoherencia máxima
para la que la desigualdad de CH se viola (dentro de una tolerancia pequeña
dada) presenta un máximo como función de Q. Esto significa que existen
números de cargas transmitidas que están más protegidos contra la decoheren-
cia, i.e., para los que la influencia del entorno es menos destructiva con respecto
a la violación de la desigualdad de CH.

Aunque en este trabajo se asume que la decoherencia está producida por la pres-
encia de reservas adicionales, en los sistemas mesoscópicos son posibles otras fuentes
de decoherencia diferentes. Creemos en cualquier caso que este modelo captura los
efectos fundamentales de la decoherencia, al menos con respecto a la violación de la
desigualdad de CH, y que los resultados que encontramos en este trabajo pueden ser
útiles para diseñar las mejores condiciones experimentales posibles.

Como los sistemas reales no pueden ser completamente apantallados del entorno,
los temas analizados en este trabajo parecen adecuados no sólo desde un punto de
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vista fundamental, sino que podŕıan contribuir a la compresión de las propiedades de
canales cuánticos con pérdidas. En un futuro seŕıa interesante aplicar nuestro método
a sistemas realistas, como divisores de haces normales o superconductores.

E.9 Conclusiones al caṕıtulo 5

En este trabajo hemos analizado el efecto de la dispersión inelástica, modelada
por una sonda de voltaje que conserva la corriente para cada spin, en la detección
de enredo a través de una geometŕıa de divisor de haces. Hemos mostrado que, al
contrario que el ‘dephasing’ orbital elástico [73], la acción de los procesos inelásticos en
el divisor de haces no puede ser despreciada, ya que afecta directamente al mecanismo
f́ısico subyacente del detector, que es el hecho de que electrones con iguales números
cuánticos no pueden ser dispersados al mismo canal cuántico. Si la enerǵıa no se
conserva, este mecanismo de “antiaglomeración” deja de ser perfecto y el esquema de
detección de enredo tiene que ser revisado.

Sin embargo, hemos encontrado que la detección de enredo a través de medidas
de ruido de disparo sigue siendo posible incluso bajo condiciones muy laxas para las
imperfecciones en el divisor de haces y una cantidad sustancial de dispersión inelástica.
Incluso si no poseemos una descripción microscópica de la dispersión inelástica en la
que se pueda confiar, el análisis presente sugiere que el esquema de detección es
robusto hasta probabilidades de dispersión inelástica del 50%.

Hemos mostrado también que cumulantes de corriente de mayor orden no pro-
porcionan más información acerca del enredo de las corrientes incidentes que la que
proporciona el ruido. Hemos analizado en particular la asimetŕıa de las fluctuaciones
de corriente, encontrando que ésta es fuertemente afectada por una probabilidad
de retroceso finita y por la dispersión inelástica. En particular, se desarrolla una
asimetŕıa positiva a medida que la transparencia del divisor de haces disminuye.

Finalmente, hemos desarrollado un método nuevo para implementar conservación
de corriente en dispositivos con sondas de voltaje cuando las corrientes incidentes
poseen enredo no local. Este método puede ser aplicado a una gran variedad de
problemas en los que el enredo es el punto fundamental.
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